Reg. No.					

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (AUTOMOBILE/ AERONAUTICAL ENGINEERING) END SEMESTER EXAMINATIONS, DEC 2015/JAN 2016

SUBJECT: THERMODYNAMICS [AAE 2104]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- ❖ Use of thermodynamic data hand book is permitted.
- Missing data may be suitable assumed.
- **1A.** State the first law of thermodynamics and mention its limitation. (02)
- **1B.** A fluid at a pressure of 3 bar, and with specific volume of 0.18 m³/kg, contained in a cylinder behind a piston expands reversibly to a pressure of 0.6 bar according to a law, $p = C/v^2$ where 'C' is a constant. Calculate the work done by the fluid on the piston.
- **1C.** Derive the expression for work done and entropy change for a polytropic **(05)** process.
- **2A.** State and prove the Kelvin Planck statement of Second law of thermodynamics. (03)
- **2B.** A turbine operating on a steady flow of nitrogen is to produce 0.8 kW of power by expanding nitrogen from 300kPa, 350K (inlet specific volume of 0.346m³/kg) to 120kPa. For design purpose, the inlet velocity is assumed to be 30 m/s and the exit velocity has to be 50 m/s. The expansion takes place through a quasi equilibrium process such that $pv^{1.4} = constant$. Determine required mass flow rate.
- **2C.** A large stationary engine working on carnot cycle produces 15 MW with a thermal efficiency of 40%. The exhaust gas, which we assume to be air, flows out at 800 K and the intake air is 290 K. If 'c_p' of air is 1.005 kJ/kgK, determine the mass flow rate.
- **3A.** Derive the Maxwell's relations. (03)

AAE 2104 Page 1 of 2

3C. Consider a gas mixture that consists of 3 kg of O₂, 5 kg of N₂ and 12 kg of CH₄. (03) Determine

i. Mole fraction of each component
ii. Mass fraction of each component
iii. Average molar mass and gas constant of the mixture

(04)

- **4A.** Compare Dalton's law of partial pressures and Amagat's law of additive **(04)** volumes.
- **4B.** Steam in a closed system expands reversibly and isothermally from 180°C and dryness 65% to a final pressure of 500kPa. Sketch the process on P-v and T-s plots. Calculate the work done by steam.
- **4C.** Explain the concept of exergy. (02)
- **5A.** Sketch the P-v and T-S diagram for an ideal Brayton cycle and derive the **(03)** expression for its thermal efficiency.
- **5B.** Show the working of a vapor compression cycle using a neat P-h plot and derive **(03)** an expression for its coefficient of performance.
- **5C.** In an air standard Diesel cycle, the compression ratio is 16 and at the beginning of isentropic process, the temperature is 15°C and pressure is 0.1MPa. Heat is added until the temperature at the end of constant pressure process is 1480°C. Calculate:
 - i. Cut-off ratio

3B.

ii. iii.

iv.

ii. Heat supplied per kg of air

Briefly describe the following terms:

Dryness fraction

Mollier diagram

Clausius- Clapeyron Equation

Joule-Thomson coefficient

iii. Cycle efficiency

AAE 2104 Page 2 of 2