Reg. No.					

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

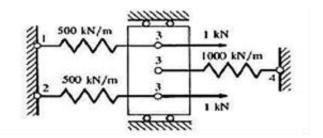
III SEMESTER B.TECH (AUTOMOBILE ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: COMPUTER AIDED DESIGN [AAE 253]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 50

Instructions to Candidates:


❖ Answer **ALL** the questions.

Missing data may be suitable assumed.

1A.	Explain the role of computers in design process.	(05)
1B.	Differentiate between random and raster scan display.	(02)
1C.	Sketch and explain star LAN and Ring type modes of communication.	(03)
2A.	Explain DDA algorithm with flow chart.	(03)
2B.	Discuss and write Bresenham circle drawing algorithm.	(04)
2C.	Use Bresenham line drawing algorithm to draw the line segment joining (15, 10) to (20, 14).	(03)
3A.	Draw a circle using Bresenham circle algorithm with center C (0, 0) and radius r= 4.	(03)
3B.	Derive the expression for inclined ellipse.	(03)
3C.	Discuss and derive Bresenham line drawing algorithm.	(04)
4A.	Find the equation of a closed B-spline curve defined by four control points. Where n=3, the knot vector [u0 u1 u2 u3 u4] is the integers of [0 1 2 3 4] and	(06)
4B.	the range of u is 0≤ u ≥ 4. Derive the expression for Hermite cubic curve.	(04)

AAE 253 Page 1 of 2

5A. For the bar assemblages shown in Figure, determine the nodal **(03)** displacements, the forces in each element, and the reactions. Use the direct stiffness method for these problems.

- **5B.** A ruled surface is defined by 2 Bezier curves P_0 [3 5 9] T , P_1 [9 3 2] T , P_2 [2 8 3] T and the second curve is defined by P_3 [3 3 -3] T , P_4 [9 7 -4] T , P_5 [9 8 -1] T and P_6 [3 2 -1] T . Evaluate coordinate points at u=0.3 & v= 0.5.
- **5C.** Derive the stiffness matrix for bar element. (03)
- **6A.** Derive the parametric expression for circle. (03)
- **6B.** Derive the parametric expression for line. (03)
- **6C.** Derive the parametric expression for parabola. (04)

AAE 253 Page 2 of 2