

## MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL - 576 104



## THIRD SEMESTER B.E DEGREE END SEMESTER EXAMINATION ENGINEERING MATHEMATICS III (MAT 2102) (COMMAN TO E&C, E&E, ICE, Bio-Med. Engg) (REVISED CREDIT SYSTEM)

Time : 3 Hrs.

Max. Marks : 50

## Note : a). Answer all questions. b). All questions carry equal marks

1A. Expand, 
$$f(t) = \begin{cases} \pi t , & 0 < t \le 1 \\ \pi(2-t), & 1 < t < 2 \end{cases}$$
,  $f(t+2) = f(t)$  and hence evaluate  
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

- 1B. Find the directional derivative of  $\varphi = 4e^{2x-y+z}$  at the point (1,1,-1) in the direction towards the point (-3,5,6).
- 1C. If f(z) = u + iv is an analytic function of z = x + iy, show that

$$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) |f(z)|^p = p^2 |f(z)|^{p-2} |f'(z)|^2$$

$$(4+3+3)$$

2A. Find the Fourier transform of  $f(x) = \begin{cases} a - |x|, |x| \le a \\ 0, |x| > a \end{cases}$ 

and hence evaluate  $\int_{0}^{\infty} \left(\frac{\sin t}{t}\right)^2 dt$ 

2B. Solve  $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial x \partial y} - 2\frac{\partial^2 u}{\partial y^2} = 0$  using the transformations v = x + y, z = 2x - y.

2C. Prove that  $\vec{A} = r^n \vec{r}$  is irrotational. Find n when it is also solenoidal.

(4 + 3 + 3)

3A. Find 
$$F_c\{e^{-ax}\}, F_s\{e^{-ax}\}, 0 < a < 1, and hence evaluate  $F_c\{xe^{-ax}\}, F_s\{xe^{-ax}\}\}$$$

3B. Find the analytic function f(z) whose imaginary part is  $e^{-x}(y\cos y - x\sin y)$ .

3C. Evaluate  $\oint_{S} \vec{A}.\hat{n} dS$  where  $\vec{A} = (2x - y)\hat{i} - 2y\hat{j} - 4z\hat{k}$  and S is the surface of the region bounded by x = 0, y = 0, z = 0, z = 3 and  $x^{2} + y^{2} = 16$  lying in the first octant. (4 + 3 + 3)

## 4A. Obtain all possible power series expansions of the function $f(z) = \frac{1}{z(z-1)^2} about \quad z = -1.$

- 4B. Assuming the most general solution, find the deflection u(x, t) in a vibrating string of length  $\pi$ , which is fixed at end points, starts vibration with an initial deflection  $u(x,0) = k(\sin x \sin 2x)$  and zero initial velocity.
- 4C. Obtain the half-range Fourier Cosine series expansion of f(x) = x(l-x), 0 < x < l. Also sketch the corresponding periodic extension of f(x).

$$(4+3+3)$$

5A. Verify Green's theorem in the plane for  $\oint_C (xy - x^2) dx + x^2 y dy$ ,

where C is the triangle with vertices at (0,0), (1,0) and (1,1).

5B. Evaluate 
$$\oint_{|z|=3} \frac{e^z}{z^3(z^2-3z+2)} dz$$

5C. Assuming the most general solution, find the temperature u(x, t) in a rod of length 10 cms, which is perfectly insulated laterally, ends are kept at zero degree temperature and whose initial temperature is given by, u(x, 0) = x(10-x)

$$(4 + 3 + 3)$$

\*\*\*\*\*