

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (BIOTECHNOLOGY)

END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: BIOPROCESS CALCULATIONS [BIO 2104]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ALL the questions.

✤ Missing data may be suitable assumed.

1A.	The heat capacity of carbon dioxide gas is given by $C_P = 0.1978 + 1.059 * 10^{-4} T - 2.395 * 10^{-8} T^2$ Where C_P is in Btu/(lb °F) and T is in °F. Change the equation into the form in which C_P is given in kJ/(kmol K) and temperature is in K.	5
1B.	Discuss the different steps involved in Bioprocess development with a neat flow diagram.	5
2A.	In the production of a drug having a molecular weight of 192, the exit stream from the reactor flows at the rate of 10.3 L/min. The drug concentration is 41.2% (in water), and the specific gravity of the solution is 1.025. Calculate the concentration of the drug (in kg/L) in the exit stream, and the flow rate of the drug in k mol /min	4
2B.	Sodium chloride (Mol. Wt 58.5) weighing 600 kg is mixed with 200 kg potassium chloride (Mol. Wt 74.5). Find the composition of the mixture in (a) mass % (b) mole%	3
2C.	In a gas mixture consisting of hydrogen, nitrogen and carbon dioxide, the partial pressures are 25 kPa for hydrogen, 35 kPa for nitrogen and 140 kPa for CO ₂ . For 50 m ³ of the gas mixture at 400 K, determine the following: (a) The number of moles and mole fraction of hydrogen (b) The pure-component volume of hydrogen (c) The average molecular weight of the mixture	3
3A.	A triple effect evaporator is used to concentrate 1500 kg of aqueous solution from a concentration of 25 % solute to 75 % solute. Assuming equal amount vaporization in each effect, calculate the composition and weight of the solution entering the second and third evaporator	7

			De					
			Re	g. No.				
प्रज्ञानं ब्रह्म Manipal	-	-			chnolo Ianipal Uni	gy, Ma iversity)	nipal	NOWLEDGE IS
RED BY	The relationship between the pressure P and volume V of the air in a cylinder							OTEO
3B.	during the u	upstroke c	of a piston i	n an air co P*V ^K = C	mpressor c	an be expre		3
	Determine the values of K and C that best fit the data. (Give both numerical values and units)							
4A.	 Chlorine is produced by the oxidation of hydrogen chloride gas with air 4 HCl + O₂ > 2 Cl₂ + 2 H₂O The reaction is carried out at 1.2*10⁵ N/m² and 400 k. 50% excess oxygen is used and the reaction is only 80% complete. Calculate the following (a) The volume of air admitted per 100 m³ of HCl if both air and HCl enter the reactor at 1 bar and 290 K. (b) The volume of gases leaving the reactor per 100 m³ of HCl entering (c) The percentage composition by volume of the exit gas on a dry basis. 							
4B.	 A distillation column is charged with aqueous solution of ethanol containing 35% ethanol by weight. The concentrated alcohol is withdrawn as the distillate containing 85% ethanol. The bottom product contains 5% ethanol. Determine the following: (a) The mass of distillate per 100 kg of feed. (b) The ratio of the mass of the distillate to mass of the residue. 							
5A.	Biological denitrification of nitrate containing waste waters can be described by the following overall reaction $NO_3^{-1} + a CH_3OH + H^+ \rightarrow b C_3H_7NO_2 + c N_2 + d CO_2 + e H_2O$ (a) Determine a, b, c, d and e, if $Y_{X/S} = 0.5 \text{ g X/g N}$. (b) Determine the degree of reduction of bacteria and methanol							
5B.	Heat capacity data for gaseous SO ₂ is given by the following equation: $C_{P}\left(\frac{kJ}{kmol *K}\right) = 43.458 + 10.634^{*}10^{-3} \text{ T} - 5.945^{*}\frac{10^{5}}{T^{2}}$ Calculate the heat needed to raise the temperature of 1 kmol pure Sulphur dioxide from 300 K to 1000 K							