| Reg. No. |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|



## Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)



## III SEMESTER B.TECH (CHEMICAL/BIOTECHNOLOGY) MAKE UP END SEMESTER EXAMINATIONS, DEC/JAN – 2015-16

SUBJECT: ENGINEERING MATHEMATICS III [MAT 2103]

## **REVISED CREDIT SYSTEM**

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

| 1A. | State Dirichlet's condition. Also find the Fourier series representation of $f(x) = x - x^2$ , $f(x + 2\pi) = f(x)$ in $(-\pi, \pi)$ .                                                                                                 | 4 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1B. | Given a conservative vector field $\mathbf{F} = (2xy + z^3)\mathbf{i} + x^2\mathbf{j} + 3xz^2\mathbf{k}$ ,<br>Find its scalar potential and also find the work done in moving an object<br>in this field from (1, -2, 1) to (3, 1, 4). | 3 |
| 1C. | Solve by the method of separation of variables<br>$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} = 2(x + y)u.$                                                                                                         | 3 |
| 2A. | State Gauss divergence theorem. Hence evaluate $\iint_{S} F.nds$ where<br>$F = 4xi - 2y^{2}j + z^{2}k$ taken over the region bounded by $x^{2} + y^{2} = 4$ ,<br>z = 0 and $z = 3$ .                                                   | 4 |
| 2B. | Let $f(z) = u + iv$ be an analytic function, show that<br>$\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial x^2}\right)  f(z) ^2 = 4 f'(z) ^2$                                                                       | 3 |
| 2C. | Using Fourier integral representation, Prove that<br>$\int_{0}^{\infty} \frac{\cos sx + s \sin sx}{1 + s^{2}} ds = \begin{cases} 0 & x < 0 \\ \frac{\pi}{2} & x = 0 \\ \pi e^{-x} & x > 0 \end{cases}$                                 | 3 |

|                                         | Reg. No.                                                                                                                                                                                          |                                                           |  |  |  |
|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|
| प्रज्ञानं ब्रह्म<br>Manipal<br>PIRED BY | Manipal Institute of Technology, Manipal (A Constituent Institute of Manipal University)                                                                                                          | OWLEDGE IS POW<br>↓ 11 ·································· |  |  |  |
| 3A.                                     | State Cauchy's residue theorem and find the residues of $f(z) = \frac{z^2 - 16}{(z+4)(z-1)^2}$ at all the singularities.                                                                          | 4                                                         |  |  |  |
| 3B.                                     | Find the Fourier transform of $f(x) = e^{-a^2x^2}$ , $a > 0$ . Hence show that $e^{\frac{-x^2}{2}}$ is a self-reciprocal function.                                                                | 3                                                         |  |  |  |
| 3C.                                     | Form a partial differential equation by eliminating arbitrary function $f(x^2 + y^2, z - xy) = 0$                                                                                                 |                                                           |  |  |  |
| 4A.                                     | Find all possible expansion of the following:<br>i. $\frac{1}{z^2-z}$ about $z = 1$<br>ii. $zsinz$ about $z = \frac{\pi}{2}$                                                                      | 4                                                         |  |  |  |
| 4B.                                     | Obtain the half range cosine series of<br>$f(x) = \begin{cases} kx & 0 < x < \frac{l}{2} \\ k(l-x) & \frac{l}{2} < x < l \end{cases}$                                                             | 3                                                         |  |  |  |
| 4C.                                     | Prove that $\nabla^2 r^n = n(n+1)r^{n-2}$ .                                                                                                                                                       |                                                           |  |  |  |
| 5A.                                     | Solve $u_{xx} + 2u_{xy} + u_{yy} = 0$ using the transformation $v = x$ and $z = x - y$                                                                                                            |                                                           |  |  |  |
| 5B.                                     | Find the values of the constants a, b, c such that the directional derivative of $\emptyset = axy^2 + byz + cz^2x^3$ at (1, 2, -1) has maximum magnitude of 64 in a direction parallel to z axis. |                                                           |  |  |  |
| 5C.                                     | Solve $\int_{c} \frac{z+4}{z^{2}+2z+5} dz$ where c is<br>i. $ z =1$<br>ii. $ z+1-i =2$<br>iii. $ z+1+i =2$                                                                                        | 3                                                         |  |  |  |