Reg. No.									
----------	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (CHEMICAL/BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ENGG.MATHEMATICS III [MAT 2103]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- Missing data may be suitable assumed.

Expand $f(x) = 2x - x^2$ in (0, 3) as Fourier series. Hence deduce that 4 1A. $\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}.$ Find the angle between the surfaces $z = \left(x - \frac{\sqrt{6}}{6}\right)^2 + \left(y - \frac{\sqrt{6}}{6}\right)^2$ and 3 1B. $z = x^2 + y^2$ at $P(\frac{\sqrt{6}}{12}, \frac{\sqrt{6}}{12}, \frac{1}{12})$. Solve $u_{xy} - u_{yy} = 0$ using the transformation v = x, z = x + y. 3 1C. State Green's theorem apply the and same $\int_{C} (2x^2 - y^2) dx + (x^2 + y^2) dy$, where C is the boundary of evaluate 4 2A. the area enclosed by x-axis and the upper half of the circle $x^2 + y^2 = a^2$. the even periodic extension of the $f(t) = \begin{cases} e^{-t} & 0 < t < 1 \\ 0 & 1 < t < 2 \end{cases}$ Also obtain the half range cosine Sketch function 3 2B. expansion. Find the analytic function f = u + iv, where $v = \log(x^2 + y^2) + x - 2y$ 3 2C. Find the residue of the following functions at their singularities: (i) $\frac{e^{z}}{(z-1)^{3}}$ (ii) $\frac{1}{1-\cos z}$ 4 3A.

	Reg. No.								
ज्ञानं ब्रह्म Manipal RED BY LI	Manipal Institute of Technology, Manipal (A Constituent Institute of Manipal University)	LEDGE IS							
3B.	Find the Fourier transform of $f(x) = \begin{cases} a^2 - x^2 & x < a \\ 0 & x > a \end{cases}$. Hence show that $\int_0^\infty \frac{\sin t - t \cos t}{t^3} dt = \frac{\pi}{4}$.								
3C.	Solve by the method of separation of variables: $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u; u(x,0) = 6e^{-3x}$								
4A.	Derive the one dimensional wave equation by stating the appropriate physical assumptions.								
4B.	Prove $\mathbf{F} = (y^2 \cos x + z^3) \mathbf{i} + (2y \sin x - 4) \mathbf{j} + (3xz^2 + 2)\mathbf{k}$ is a conservative force field. Find the scalar potential for F .								
4C.	Show that $v(x,y) = -sinx sinhy$ is harmonic. Find the conjugate harmonic of v.								
5A.	If $f(\xi) = \int_C \frac{4z^2 + z + 5}{z - \xi} dz$, where C is the ellipse $\left(\frac{x}{2}\right)^2 + \left(\frac{y}{3}\right)^2 = 1$, find the value of $f(3.5), f(i), f'(-1)$ and $f''(-i)$.								
5B.	Prove the property $F_s\{xf(x)\} = -\frac{d}{ds}F_c$. Also find $F_c\left\{\frac{1}{1+x^2}\right\}$ and use the given property to find $F_s\left\{\frac{x}{1+x^2}\right\}$.								
5C.	Let $\vec{F} = 4xz\hat{i} - y^2\hat{j} + yz\hat{k}$. Evaluate $\iint_{s} F.nds$, where S is the surface of the cube bounded by $x = 0, x = 1, y = 0, y = 1, z = 0, z = 1$.								