Reg. No.

Manipal Institute of Technology, Manipal

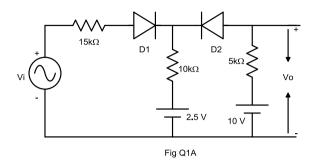
(A Constituent Institute of Manipal University)

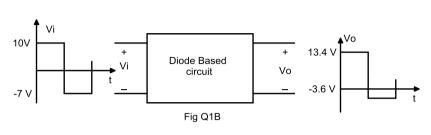
III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, DEC 2015 / JAN 2016

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]

REVISED CREDIT SYSTEM

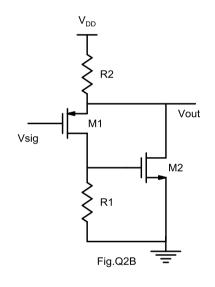
Time: 3 Hours 09 January 2016 MAX. MARKS: 50

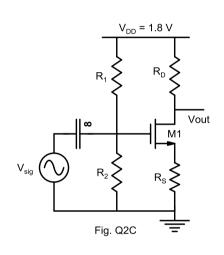

Instructions to Candidates:

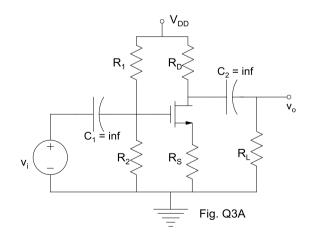

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.

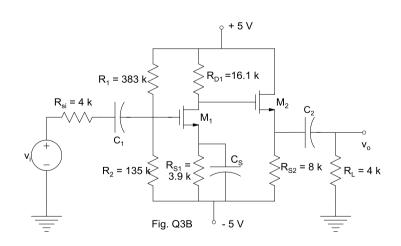
1A.	In the figure as shown in fig.Q1A, if Vi has a peak of 30 V, then draw the transfer characteristics.	4
1B.	In the figure as shown in fig.Q1B, identify the diode (V_D = 0.6 V) based circuit.	3
1C.	Design a Zener voltage regulator for the following specifications: output voltage = $5V$, input voltage = $12 \pm 3 V$, load current = 20 mA , zener power rating = 500 mW .	3
2A.	Discuss the transconductance of MOSFET. Hence derive the equations governing the relationship between transconductance, current, aspect ratio and gate overdrive voltage of the MOSFET.	3
2B.	Assuming λ≠0, draw the small signal model of the circuit shown in Fig.Q2B.	3
2C.	Design the circuit shown in Fig. Q2C for a voltage gain of 5V/V and a power budget of 6mW. Assume that the voltage divider branch consumes 5% of total power and voltage drop across Rs is equal to the overdrive voltage of the transistor. Also assume $R_D=200\Omega$, $V_{TH}=0.4$ V, $\mu nCox=200$ $\mu A/V2$, $\lambda=0$.	4
3A.	For the NMOS common source amplifier shown in Fig. Q3A, the transistor parameters are: $V_{th} = 0.8 \text{ V}$, $\mu_n C_{ox}$ (W/2L) = 1 mA/V², $V_{DD} = 5 \text{ V}$, $R_s = 1 \text{ k}\Omega$, $R_D = 4 \text{ k}\Omega$, $R_1 = 225 \text{ k}\Omega$, $R_2 = 175 \text{ k}\Omega$. Calculate the quiescent values I_{DQ} and V_{DSQ} . Draw the small signal model and hence determine the small signal gain for R_L is infinite. Neglect Channel length modulation.	5
3B.	Determine the small signal voltage gain of the multistage cascade circuit shown in Fig. Q3B. Draw the small signal model and neglect channel length modulation.	5
4A.	Bandwidth of an amplifier lies between 150 Hz and 100 kHz. Find frequency range over which voltage gain is less than 2 dB from mid-band value.	3
4B.	Design an NMOS current mirror with $V_{DD}=6V$, $V_{SS}=0V$, $I_{ref}=100\mu A$. For the matched transistors $I_{ref}=100\mu M$, $W_{ref}=1V_{ref}=100\mu A/V^2$	3

ELE 2105 Page 1 of 2


- **4C.** Derive expressions for Differential gain, Common mode gain and CMRR of a MOS Differential Pair.
- **5A.** State and prove Millers theorem for a MOSFET based amplifier circuit and derive suitable expressions for Miller Capacitance.
- **5B.** Derive the expression for conversion efficiency of Class A series fed and transformer coupled Power amplifiers.






4

5

ELE 2105 Page 2 of 2