Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

02

03

03

03

03

04

03

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 209]

REVISED CREDIT SYSTEM

Time: 3 Hours 08 DECEMBER 2015 MAX. MARKS: 50

Instructions to Candidates:

- Missing data may be suitably assumed.
- **1A.** Determine V_o, I, I₁ and I₂ for the circuit shown in Fig.Q1A. Assume Silicon diodes.
- **1B.** Plot v_0 v/s time for the circuit shown in Fig. Q1B. Assume ideal diodes. **05**
- **1C.** Parameters of a 6.3 V Zener diode for voltage regulator are: $V_Z = 6.3$ V at $I_{ZT} = 40$ mA and $R_Z = 2$ Ω . V_s varied between 12 V to 18 V. Minimum load current is 0mA. Minimum Zener diode current is 1 mA. Power dissipation of Zener diode must not exceed 750 mW at 25°C. Determine a) i_{zmax} b) value of R_s that limits the Zener current i_{zmax} to value determined in part a) and c) power rating of R_s .
- **2A.** Design a circuit to obtain the output voltage waveform shown in Fig. Q2A, for the given input waveform and justify. Assume silicon diodes.
- **2B.** Determine R_i , R_i , A_V , A_{Vs} , A_I and A_{Is} for the circuit shown in Fig.Q2B. Assume A_V to be very high. Draw the h parameter model. Given hie = 1.1 k, hfe = 50.
- **3A.** In the amplifier shown in Fig. Q3A, the MOSFET has $V_{TH} = 0.7 \text{ V}$, $\mu n \text{Cox} = 500 \ \mu A/V2$, $\lambda = 0$, drain current $I_D = 1 \text{ mA}$. Determine
 - a) W/L and gm of the MOSFET

❖ Answer **ANY FIVE** Full questions.

- b) Maximum small signal gain from Vsig to Vo
- **3B.** With a neat circuit diagram, discuss the MOSFET based RC coupled amplifier. Hence discuss the role played by each discrete circuit element in defining the gain and frequency response.
- **3C.** In the cascaded amplifier shown in Fig. Q3C, the MOSFETs have, drain currents $I_{D1}=2$ mA, $I_{D2}=1$ mA, $V_{TH}=0.7$ V, $\mu_n C_{ox}=500$ $\mu A/V^2$, $\lambda=0$
 - a) Draw the small signal model
 - b) Find the small signal gain from Vsig to V_L
 - c) Determine Rin and Rout of the amplifier.
- **4A.** For the amplifier shown in fig. Q4A, if it is required to have cut-off frequencies as 1 kHz and 40kHz, then determine the values of capacitances C_1 , C_2 and C_L . Assume $\lambda = 0.01$ per volt.

ELE 209 Page 1 of 3

- **4B.** In the circuit shown in Fig Q4B, if $(\mu nCox)_1=(\mu nCox)_2=200~\mu A/V^2$, $I_{D1}=100\mu A,~V_{TH1}=V_{TH2}=0.4~V,~\lambda=0,~(W/L)_1=5$, then determine
 - a) Resistance R1
 - b) VDS2 if $(W/L)_2 = 0.1 \times (W/L)_1$

03

4C. With a neat circuit and diagram and necessary waveforms, evaluate maximum efficiency of a series fed class A power amplifier. Suggest suitable modifications to improve the efficiency.

04

5A. Design a voltage divider bias circuit for following specifications: β = 50, V_{BE} = 0.7 V, V_{cc} = 22.5 V, R_c = 5.6 kΩ, Q point at V_{CE} = 12 V, I_C = 1.5 mA, $S \le 3$.

03

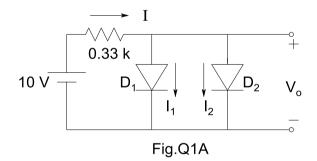
5B. For a class B Power amplifier providing a 20 V peak signal to a 8 Ω load (speaker) and a power supply of $V_{CC}=|V_{EE}|=30$ V, determine the input power, output power and efficiency of the circuit.

03

5C. Write a note on Basic Series and Shunt Voltage Regulators with neat circuit diagrams.

04

6A. For a full bridge rectifier supplying a load of 200 Ω from an ac source of 30 V at 50 Hz, calculate average load voltage and percentage ripple if a capacitor of 1000 μF is used as filter.


04

6B. With relevant waveforms define storage time, transition time and reverse recovery time of PN junction diode.

03

6C. Classify the power amplifier based on the conduction angle.

03

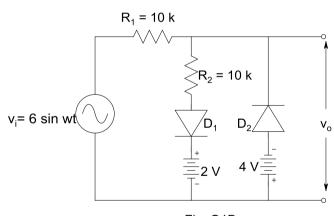
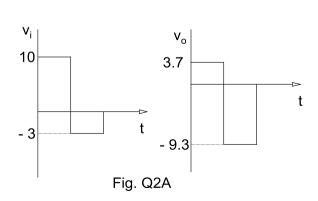
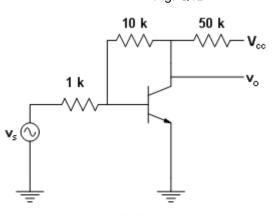
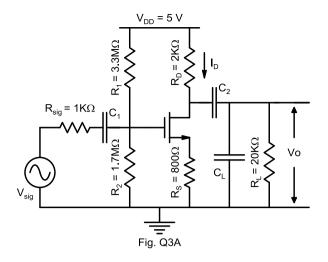
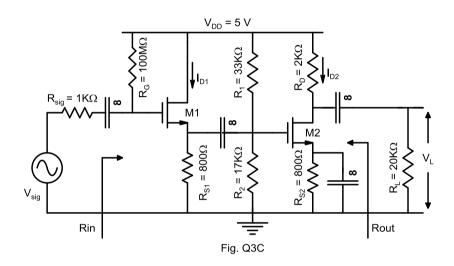
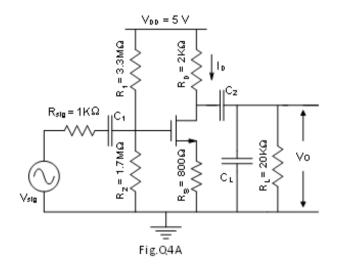
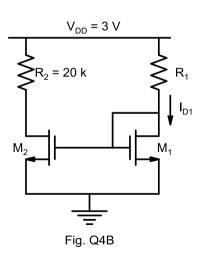



Fig. Q1B


Fig.Q2B

ELE 209 Page 2 of 3

ELE 209 Page 3 of 3