		Reg. No.										
प्रज्ञानं ब्रह्म Manipal	Manipal Institut (A Constituent I	e of Tec Institute of M	e hn anip	o lo al Un	gy, iversit	M ty)	an	ip	al	KNO	WLEDGE IS	POWER DAS

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ANALOG ELECTRONIC CIRCUITS [ELE 2105]

REVISED CREDIT SYSTEM

Time: 3 Hours

08 DECEMBER 2015

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitably assumed.
- 1A. Determine V_0 , I, I₁ and I₂ for the circuit shown in Fig.Q1A. Assume Silicon 02 diodes.
- 1B. Plot v_0 v/s time for the circuit shown in Fig. Q1B. Assume ideal diodes.
- **1C.** Parameters of a 6.3 V Zener diode for voltage regulator are: $V_Z = 6.3$ V at I_{ZT} = 40 mA and R_Z = 2 Ω . V_s varied between 12 V to 18 V. Minimum load current is 0mA. Minimum Zener diode current is 1 mA. Power dissipation of Zener diode must not exceed 750 mW at 25°C. Determine a) izmax b) value of R_s that limits the Zener current i_{zmax} to value determined in part a) and c) power rating of R_s.
- 2A. Design a circuit to obtain the output voltage waveform shown in Fig. Q2A, for 03 the given input waveform and justify. Assume silicon diodes.
- Using Miller theorem, determine voltage gain, input resistance and output 2B. resistance of MOSFET amplifier circuit shown in Fig. Q2B. Assume $V_{th} = 1 V_{th}$ $\mu_0 C_{0x}(W/L) = 1 \text{ mA/V}^2$, $\lambda = 0$. Asume A_v to be large initially. Also draw the small signal model.
- In the amplifier shown in Fig. Q3A, the MOSFET has $V_{TH} = 0.7$ V, 3A. μ nCox = 500 μ A/V2, λ = 0, drain current I_D = 1 mA. Determine
 - a) W/L and gm of the MOSFET
 - b) Maximum small signal gain from Vsig to Vo
- With a neat circuit diagram, discuss the MOSFET based RC coupled 3B. amplifier. Hence discuss the role played by each discrete circuit element in 03 defining the gain and frequency response.
- In the cascaded amplifier shown in Fig. Q3C, the MOSFETs have, drain 3C. currents $I_{D1} = 2 \text{ mA}$, $I_{D2} = 1 \text{ mA}$, $V_{TH} = 0.7 \text{ V}$, $\mu_n C_{ox} = 500 \mu A/V^2$, $\lambda = 0$
 - a) Draw the small signal model
 - b) Find the small signal gain from Vsig to V_{L}
 - c) Determine Rin and Rout of the amplifier.

Page 1 of 3

07

05

03

03

04

- **4A.** For the amplifier shown in fig. Q4A, if it is required to have cut-off frequencies as 1 kHz and 40kHz, then determine the values of capacitances C_1 , C_2 and C_L . Assume $\lambda = 0.01$ per volt.
- **4B.** In the circuit shown in Fig Q4B, if $(\mu n \text{Cox})_1 = (\mu n \text{Cox})_2 = 200 \ \mu \text{A/V}^2$, $I_{D1} = 100\mu\text{A}$, $V_{TH1} = V_{TH2} = 0.4 \text{ V}$, $\lambda = 0$, $(W/L)_1 = 5$, then determine
 - a) Resistance R1
 - b) VDS2 if $(W/L)_2 = 0.1 \times (W/L)_1$
- **4C.** With a neat circuit and diagram and necessary waveforms, evaluate maximum efficiency of a series fed class A power amplifier. Suggest suitable modifications to improve the efficiency.
- **5A.** A MOS differential pair operated at a bias current of 1.8mA employs transistors with (W/L) of 100, $\mu_n C_{ox}=0.2mA/V^2$, $R_D=5k\Omega$ and $R_{SS}=20k\Omega$. Find the differential gain, common mode gain and the common mode rejection ratio if the output is taken single-endedly and the circuit is perfectly matched.
- **5B.** For a class B Power amplifier providing a 20 V peak signal to a 8 Ω load (speaker) and a power supply of V_{DD}=|V_{SS}|=30 V, determine the input power, output power and efficiency of the circuit. **03**
- **5C.** Draw the circuit of an Active loaded MOS differential pair and discuss the merits of this circuit considering common mode and differential input voltage. **04**

03

03

04

03

