Reg. No.					

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING) MAKE UP EXAMINATIONS, DEC 2015 / JAN 2016

SUBJECT: ELECTROMAGNETIC THEORY [ELE 2104]

REVISED CREDIT SYSTEM

Time: 3 Hours 07 January 2016 MAX. MARKS: 50

Instructions to Candidates:

- ❖ Answer **ALL** the questions.
- Missing data may be suitable assumed.
- **1A.** Determine the field intensity at a point 'P' at a distance 'h' metres above a straight, uniformly charged wire with a linear density of $+\lambda$ coulomb per meter length. Find the electric field intensity if the point under consideration is along the perpendicular bisector of the wire.
- 4
- **1B.** A uniform sheet charge with $\rho_s = (1/3\pi) \text{ nC/m}^2$ is located at z = 5m and a uniform line charge with $\rho_L = -(25/9) \text{ nC/m}$ at z = -3, y = 3m. Find **E** at (x, -1, 0)
- 3

- **1C.** If $\mathbf{D} = (2y^2 + z) \mathbf{a_x} + 4xy \mathbf{a_y} + x \mathbf{a_z} C/m^2$, find
 - a) The volume charge density at (-1, 0, 3)
 - b) The flux through the cube defined by $0 \le x \le l$, $0 \le y \le l$, $0 \le z \le l$
 - c) The total charge enclosed by the cube

3

- **2A.** Two extensive homogeneous isotropic dielectric meet on z=0. For $z\geq 0$, $\varepsilon_r=4$ and for $z\leq 0$, $\varepsilon_r=2$. A uniform electric field $\mathbf{E_1}=6\mathbf{a_x}+2\mathbf{a_y}-3\mathbf{a_z}$ exists for $z\geq 0$. Find
 - a) $\mathbf{E_2}$
 - b) Angle made by E_2 to the interface.

4

2B. A spherical capacitor with a=1.5 cm and b=4 cm has an inhomogeneous dielectric of $\epsilon=(10\epsilon_0)/r$. Calculate capacitance of the capacitor.

3

- **2C.** The positive y-axis with a semi-infinite line with respect to origin carries a current of 2 A in the **-a**_v direction. Find **H** at :
 - a) A(2, 3, 0)

3

b) B (3, 12, -4)

3

3A. Derive the expression for **H** at any point due to infinite sheet carrying current in the x-y plane using Ampere's circuital law.

4

ELE 2104

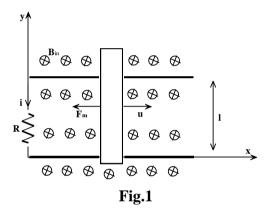
- **3B.** Given $\mathbf{H} = y^2 z \, \mathbf{a}_x + 2(x+1)yz \, \mathbf{a}_y (x+1)z^2 \, \mathbf{a}_z$.
 - a) Find the total current enclosed in the square path from P (0, 2, 0) to Q (0, 3, 0) to R (0, 3, 1) to S (0, 2, 1) to P
 - b) Prove that the line integral of **H** over a closed path is equal to the surface integral of curl of **H** for the given field.

3

3

4

2


4

4

2

4

- **3C.** A current filament carrying 8 A in the $\mathbf{a_z}$ direction lies along the entire **z-axis** in free space. A rectangular loop connecting A (0, 0.2, 0) to B (0, 0.2, 0.3) to C (0, 0.7, 0.3) to D (0, 0.7, 0.2) to A lies in the $\mathbf{x} = 0$ plane. The loop current is 3 mA and it flows in the $\mathbf{a_z}$ direction in the AB segment.
 - a) Find force **F** on the side AB
 - b) Find force **F** on the side DA
- **4A.** Consider the loop of **Fig.1**. If $\mathbf{B} = 0.5 \ \mathbf{a_z} \ \text{Wb/m2}$, $R = 20 \ \Omega$, $l = 10 \ \text{cm}$, and the rod is moving with a constant velocity of $8 \ \mathbf{a_x} \ \text{m/s}$, find:
 - a) The induced emf in the rod
 - b) The current through the resistor
 - c) The motional force on the rod

- **4B.** In a medium characterized by σ =0 , ϵ = ϵ_o , μ = μ_o E(z , t) = $20sin(10^8t \beta z)a_y$ V/m. Calculate β and H.
- **4C.** In free space $(z \le 0)$ a plane wave with $\mathbf{H_i} = 100 \sin(10^8 t \beta z) \, \mathbf{a_x} \, \text{A/m}$ is incident normally on a lossless medium $(\epsilon = 2\epsilon_o, \, \mu = 8\mu_o)$ in region $z \ge 0$. Determine reflected wave $\mathbf{E_r}$ and the transmitted wave $\mathbf{H_t}$.
- **5A.** Derive poynting theorem and show that total power leaving the volume is equal to rate of decrease in energy stored in electric and magnetic fields minus power dissipated
- **5B.** In free space, $\mathbf{H}(z, t) = 0.2\sin(\omega t \beta z)\mathbf{a_y}$ A/m. Find the total power passing through the circular disk of radius 5 cm on plane z = 1.
- **5C.** An EM waves travels in free space with electric field component $\mathbf{E_s} = 60e^{\int (0.5 \text{ y} + 0.866 \text{ z})} \mathbf{a_x} \text{ V/m}$. Determine
 - a) ω and λ
 - b) The magnetic field component
 - c) The time average power in the wave.

ELE 2104 Page 2 of 2