Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

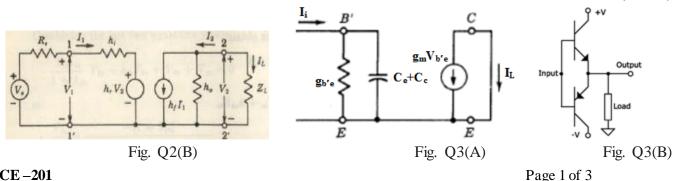
THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION **NOV/DEC 2015** SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE - 201)

TIME: 3 HOURS

MAX. MARKS: 50

(5+3+2)

(5+3+2)


Instructions to candidates

Answer ANY FIVE full questions. •

- Missing data may be suitably assumed.
- 1A. For the transistor circuit in Fig. Q1(A), $V_{CC}=22.5V$, $R_{C}=5.6k\Omega$, $R_{e}=1k\Omega$, $R_{1}=90k\Omega$, $R_{2}=1k\Omega$, $V_{BE}=1$ 0.6V, and β =55, determine the Q-point.
- 1B. Given that $R_b=9k\Omega$, $R_e=1k\Omega$, $\beta=55$ and $V_{BE} = V+(R_b+R_e)[(1+\beta)/\beta]I_{CO}-[(R_b+R_e(1+\beta))/\beta]I_C$. Assuming I_{CO} and β to be constant, determine the stability factor S'= $\partial I_C / \partial V_{BE}$.
- 1C. Explain to how to obtain h_{fe} from the transistor output characteristics. In the Fig. Q1(C), if $i_{C2}=2mA$, $i_{C1}=1mA$, $i_{B2}=20\mu A$ and $i_{B1}=10\mu A$, determine the value of h_{fe} .

les L Ic: Fig. Q1(A) Fig. Q1(C)Fig. Q2(A)

- 2A. For the transistor circuit in Fig. Q2(A), two transistors are identical with $h_{ie}=1k\Omega$ and $h_{fe}=100$ and other parameters are neglected. If terminal C is connected to V_{CC} , a 1k Ω resistor is connected from E to ground, determine the small signal resistance seen at the terminal B.
 - 2B. For the circuit drawn in Fig. Q2(B), obtain an expression for $A_I = I_I / I_1$, $Z_I = V_1 / I_1$ and $A_V = V_2 / V_1$.
- 2C. For a transistor $I_C=2mA$, $V_T=26mV$ and $h_{fe}=100$. Verify if the following statements are true.
 - (i) For the transistor, $g_m = I_C/V_T = 76.9 \text{mA/V}$.
 - (ii) For the transistor, $r_{b'e} = h_{fe}/g_m = 1.3k\Omega$.

- 3A. In the circuit of Fig. Q3(A), given that $h_{fe}=50$, $g_m = 50$ mA/V, $r_{b'e}=1$ k Ω , $C_c=3$ pF, $C_e=100$ pF. i) Obtain an expression for $A_i=I_L/I_i$. ii) Calculate the Cut-off frequency of A_i , when it is written in the form $|A_i| = h_{fe} / [1 + (f/f_B)^2]^{1/2}$
- 3B. Assuming ideal transistor, show that the amplifier circuit in Fig. Q3(B), has a maximum efficiency of 78.5%.
- i) A single stage amplifier has a upper cut-off frequency of 2MHz. Three such stages are 3C. connected in cascade are non-interacting. The overall cut-off frequency will be _____.
 - ii) In a device input current i_b and output current i_c are related by $i_c=i_b+i_b^2$. If the input current $i_b = \cos(2\pi 100t) + \cos(2\pi 200t)$, output current will be _____.

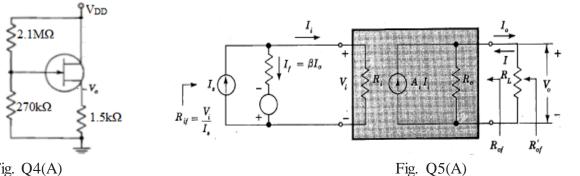
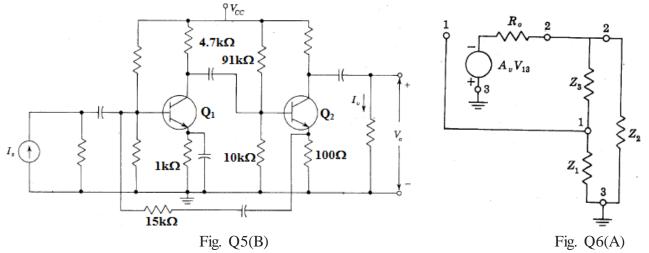


Fig. Q4(A)

4A. In the FET circuit of Fig. Q4(A), the device has $g_m=25$ mA/V, $r_d=50$ k Ω . If the input signal (V_i) is at the gate terminal, Calculate the value of voltage gain (V₀/V_i), resistance seen by the input source and the resistance seen at the output terminal.


- With necessary diagrams and I-V characteristics, explain the functioning of an n-channel MOSFET. 4B.
- 4C. Define μ of an FET. Determine the value of μ if an FET has $g_m=25$ mA/V, $r_d=50$ k Ω .
- 5A. By analyzing the amplifier block in Fig. Q5(A), show that,

$$A_{I} \equiv \frac{I_{o}}{I_{i}} = \frac{A_{i}R_{o}}{R_{o} + R_{L}} \quad R_{if} = \frac{V_{i}}{(1 + \beta A_{I})I_{i}} = \frac{R_{i}}{1 + \beta A_{I}} \quad R_{of} = \frac{V}{I} = R_{o}(1 + \beta A_{i}) \quad R'_{of} = R'_{o} \frac{1 + \beta A_{i}}{1 + \beta A_{I}}$$

- 5B. Verify if the following statements made with respect to the circuit in Fig. Q5(B) are true or false.
 - (i) Is an example of a Current Shunt feedback
 - In the network drawn without feedback, on the input side $15k\Omega$ and 100Ω resistors appear in (ii) series.
 - (iii) In the network drawn without feedback, on the output side $15k\Omega$ and 100Ω resistors appear in parallel.
 - (iv) For small signal analysis, $4.7k\Omega$, $91k\Omega$ and $10k\Omega$ appear from collector of Q1 to ground.
 - (v) The $1k\Omega$ resistor present at the emitter of Q1 will not appear in the small signal analysis due to large capacitance connected across it.

(5+3+2)

(5+3+2)

- 6A. In the circuit of Fig. Q6(A), obtain an expression for loop gain -A β . If all 'Z' are reactive elements, for -A β to be unity and positive, show that Z_1 and Z_2 must have the same sign.
- 6B. Verify if the following statements are true or false.
 - 1. In a Wien bridge oscillator, if $R=1k\Omega$, required to C to get a 10kHz oscillation is 0.016µF.
 - 2. A crystal can be used as an inductor or as a capacitor depending on the frequency of operation.
 - 3. It is possible to build an oscillator circuit using an Opamp, 2 resistors and 2 capacitors.
 - 4. Sweep circuits are commonly used in CRTs.
 - 5. To get stable frequency of oscillation, crystal oscillators are preferred.

(5+5)