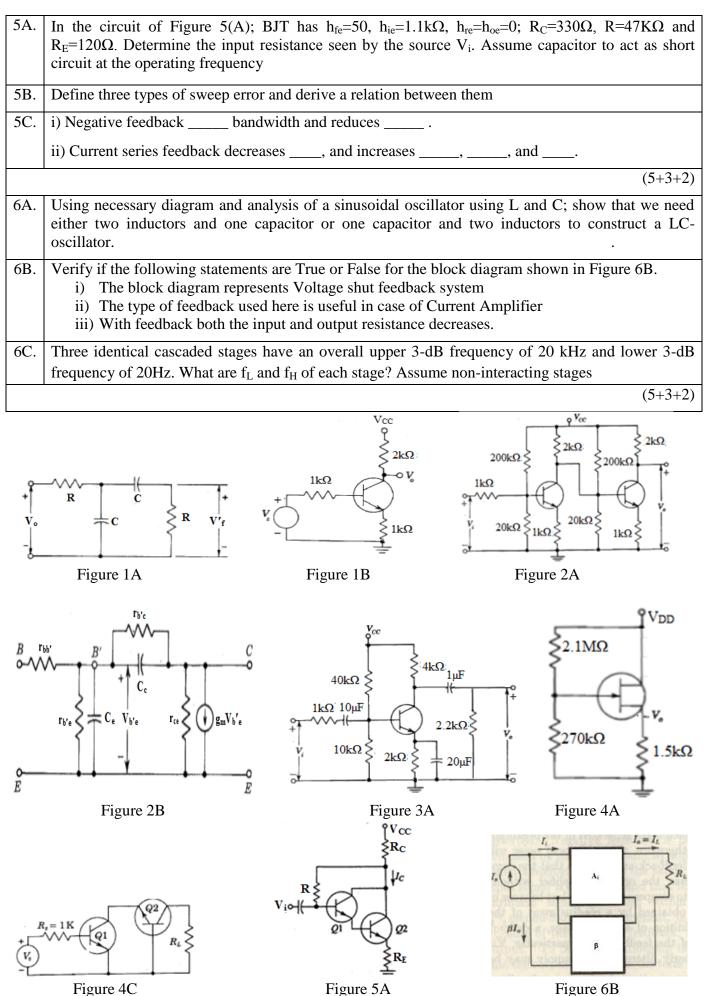
Keg. No.

MANIPAL INSTITUTE OF TECHNOLOGY
Manipal University


THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE - 201)

TIME: 3 HOURS

MAX. MARKS: 50

- Instructions to candidatesAnswer ANY FIVE full questions.
 - Missing data may be suitably assumed.

1A.	The circuit of Figure 1A is used to provide required phase shift in a oscillator. Show that
	$V'_{f}/V_{o}=1/(3+j(\omega RC-1/\omega RC))$. Also show that the frequency of oscillation is $f=1/2\pi RC$ and the
	gain required for sustained oscillation is 3.
1B.	Calculate current gain, input and output resistance for the circuit shown in Figure 1B. Assume hie
	=1.1k Ω , h _{fe} =50, h _{oe} =25 μ T and h _{re} =2.5×10 ⁻⁴ .
1C.	i) Input characteristic of BJT can be used to determine and hybrid parameters
	ii) Out of fixed bias and self-bias circuits; we get stable operating point in case of
	(5+3+2)
2A.	Calculate Current gain, Voltage gain, input and output resistance for the circuit shown in Figure 2A.
	For the BJT, use $h_{ie}=1k\Omega$, $h_{fe}=50$, $h_{re}=h_{oe}=0$.
2B.	In the hybrid- π model of BJT shown in Figure 2B, what does each component represent?
	$0 \cdot 1 = \mathbf{D} \cdot \mathbf{D} \cdot \mathbf{D}$
2C.	Given that. $\mathbf{V}_{BE} = \mathbf{V} + (\mathbf{R}_{b} + \mathbf{R}_{e})\frac{\beta + 1}{\beta}\mathbf{I}_{C0} - \frac{\mathbf{R}_{b} + \mathbf{R}_{e}(1 + \beta)}{\beta}\mathbf{I}_{C}$
	Obtain an expression for stability factor $S = \frac{\partial I_{c}}{\partial I_{co}}$
	(5+3+2)
2.4	
3A.	Determine the values of f_H , f_L and mid-band gain for the amplifier circuit shown in Figure 3A. Assume $h_{ie}=1.1k\Omega$, $h_{fe}=50$, $h_{re}=h_{oe}=0$, $g_m=1.4\times10^{-3}$ A/V, $r_{b'e}=1k\Omega$, $c_{b'e}=4pF$, $c_{b'e}=36pF$.
3B.	Show that the transformer coupling has double the conversion efficiency over direct coupling?
3C.	A transistor supplies 0.85W of power to a $4k\Omega$ load. The zero-signal dc collector current is $31mA$,
	and the dc collector current with signal is 34mA. Determine the % of second harmonic distortion.
	(5+3+2)
4A.	Calculate voltage gain, input and output impedance for the FET amplifier shown in Figure 4A.
	Assume $g_m = 2 \times 10^{-3} \text{ A/V}$ and $r_d = 40 \text{ k}\Omega$.
4B.	For an n-channel JFET obtain an expression for drain current I _D in terms of device parameters (a, w
	and L), electron mobility μ_n , doping concentration N _D , gate to source voltage V _{GS} , pinch-off voltage
	V_P and drain to source voltage V_{DS} .
4C.	In the circuit of Figure 4(C),
	 i) we observe and configuration. ii) Q2 stage will have a current gain of less than one (T/F)
	(5+3+2) $(5+3+2)$

Page 2 of 2

ECE -201