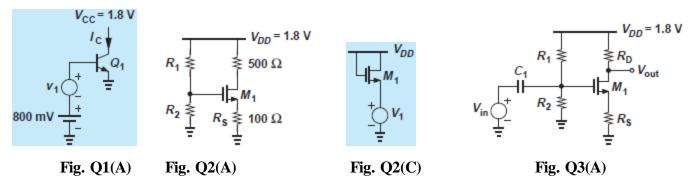
D N					
Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

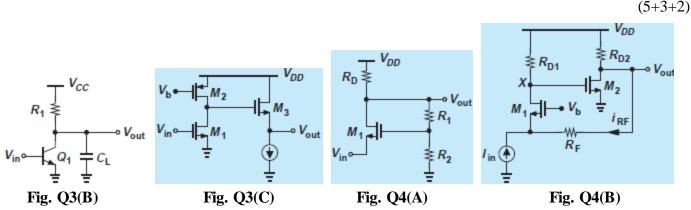
ENOWLEDGE IS POWER


THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE - 2101)

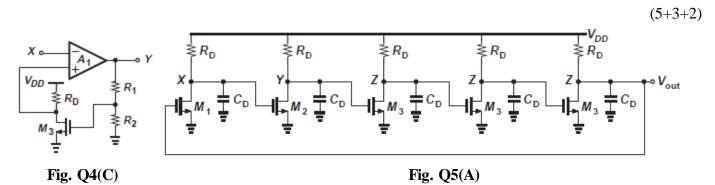
TIME: 3 HOURS

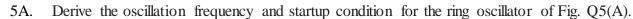
MAX. MARKS: 50

Instructions to candidates


- Answer ALL questions.
- Missing data may be suitably assumed.
- 1A. Consider the circuit shown in Fig. Q1(A), where v_1 represents the signal generated by a microphone, $I_S=3\times10^{-16}A$, $\beta=100$, and Q_1 operates in the active mode. (i) If $v_1=0$, determine the small-signal parameters of Q_1 . (ii) If the microphone generates a 1mV signal, how much change is observed in the collector and base currents?
- 1B. Due to a manufacturing error, the base width of a bipolar transistor has increased by a factor of two.
 - i) How does the collector current change?
 - ii) If this change has to be compensated by emitter area, what should be the emitter area with respect to original emitter area?
 - iii) If the transistor is a pnp transistor; is the current value same as that of npn transistor?
- 1C. A degenerated CE stage is biased at a collector current of 1 mA. If the circuit provides a voltage gain of 20 with no emitter degeneration and 10 with degeneration, calculate the value of R_c and R_E .

(5+3+2)


- 2A. The circuit of Fig.Q2(A) must be designed for a voltage drop of 200mV across R_S. Assume $V_{TH}=0.4V$, $\lambda=0$ and $\mu_n C_{OX}=200\mu A/V^2$.
 - (i) Calculate the minimum allowable value of W/L if M_1 must remain in saturation.
 - (ii) Assuming $V_G=0.8V$, design the values of R_1 and R_2 to get the input impedance of at least $30k\Omega$.
- 2B. The drain current of an NMOS device is 1 mA with $V_{GS}-V_{TH}=0.6V$ and 1.6mA with $V_{GS}-V_{TH}=0.8V$. If the device operates in the triode region, calculate V_{DS} and W/L. Assume $\mu_n C_{OX}=200\mu A/V^2$.
- 2C. Sketch the drain current of M_1 in Fig. Q2(C) versus V_1 , as V_1 varies from zero to V_{DD} . Assume $\lambda = 0$.


- 3A. Design the amplifier shown in Fig. Q3(A) to provide a voltage gain of 4 with a power budget of 2mW while the voltage drop across R_S is 200mV. The overdrive voltage of the transistor must not exceed 300mV and current through R_1 and R_2 is 5% of current drawn from supply. Assume $V_{TH}=0.4V$, and $\mu_n C_{OX}=200\mu A/V^2$.
- 3B. In the amplifier shown in Fig. Q3(B), collector current of Q₁ is 1mA, R₁=1k Ω & C_L=1pF. Calculate the frequency at which gain falls by 10%. Neglect the junction capacitors and channel length modulation.
- 3C. Figure Q3(C) is a two-stage amplifier consisting of a CS circuit and a source follower. Assuming $\lambda \neq 0$ for M₁ and M₂ but $\lambda = 0$ for M₃, and neglecting all capacitances except C_{GS3}, compute the output impedance of the amplifier.

4A. Calculate the closed loop gain, input and output resistance for the circuit in Fig. Q4(A).

- 4B. Identify the sense and return mechanisms, and the polarity of the feedback in the circuit of Fig. Q4(B). Redraw the circuit with no feedback.
- 4C. Calculate the loop gain of the circuit in Fig. Q4(C). Assume the Opamp exhibits an open-loop gain of A1, but is otherwise ideal. Also, $\lambda = 0$ for the MOSFET.

- 5B. For a BJT $i_b=2\mu Acos\omega t$ and $i_c=100i_b + 3i_b^2$. Calculate the DC content in the collect current, amplitude of fundamental and 2^{nd} harmonics. Also calculate the 2^{nd} harmonic distortion in the collector current.
- 5C. Show that the transformer coupling has the best conversion efficiency of 50%.

(5+3+2)