Reg No					
Reg. 110.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: ANALOG ELECTRONIC CIRCUITS (ECE - 2101)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions	to candidates	
• Answ	er ALL questions.	

- Missing data may be suitably assumed.
- 1A. Design the circuit of Fig. Q1(A) for an input impedance of greater than $10k\Omega$ and a g_m of at least $1/(260\Omega)$. If $\beta = 100$, $I_S = 2 \times 10^{-17}$ A, and $V_A = \infty$, determine the minimum allowable values of R_1 and R_2 .
- 1B. In the circuit of Fig. Q1(B), if $I_{S1} = 2I_{S2} = 5 \times 10^{-16}$ A, determine V_B such that $I_X = 1.2$ mA.
- 1C. (i) Calculate the output voltage for the circuit shown in Fig. Q1(Ci). Assume $I_S = 5 \times 10^{-16} A$. (ii) A BJT carries a collector current of 1 mA with $V_{CE} = 2V$. If $V_A = 20V$ and $I_S = 2 \times 10^{-16} A$, calculate the value of V_{BE} .

- 2A. The CB stage in Fig. Q2(A) has $\beta = 100$, $I_S = 8 \times 10^{-16}$ A, $V_A = \infty$, and C_B is very large. (i) Determine the operating point of Q₁. (ii) Calculate the voltage gain and I/O impedances of the circuit.
- 2B. An NMOS device operating in saturation has $\mu_n C_{OX}=200\mu A/V^2$ and $\lambda=0$ and it must provide a transconductance of $1/(50\Omega)$.
 - (i) Determine W/L if $I_D = 0.5$ mA.
 - (ii) Determine W/L if $V_{GS} V_{TH} = 0.5V$.
 - (iii) Determine I_D if $V_{GS} V_{TH} = 0.5V$.
- 2C. If $V_{TH} = 0.4V$, determine the region of operation of M_1 in each of the circuits shown in Fig. Q2(C).

$$0.5 \vee \underbrace{\downarrow}_{-}^{+} \underbrace{\downarrow}_{-}^{-} \underbrace{M_{1}}_{-} \underbrace{\downarrow}_{-}^{+} 2^{\vee} \\ \underbrace{\downarrow}_{-}^{-} \underbrace{\downarrow}_{-} \underbrace{\downarrow}_{-}^{-} \underbrace{\downarrow}_{-}^{-} \underbrace{\downarrow}_{-}^{-} \underbrace{\downarrow}_{$$

Fig. Q2(C)

(5+3+2)

- 3A. Design the circuit of Fig. Q3(A) for a drain current of 1 mA. If W/L = 20/0.18, compute R₁ and R₂ such that the input impedance is at least 20 kΩ. Assume $\mu_n C_{OX}$ =200 μ A/V², λ =0 and V_{TH} = 0.4V.
- 3B. Using Miller's theorem to obtain an expression for the input and output poles of the circuit shown in Fig. Q3(B). Assume $V_A = \infty$ and neglect all other capacitances.
- 3C. For the circuit shown in Fig. Q3(C) determine $(W/L)_2$ for a voltage gain of 3. Assume $(W/L)_1 = 20/0.18$ and $\lambda = 0$. Derive the formula used.

(5+3+2)

- 4A. Design the transimpedance amplifier of Fig. Q4(A) for a closed loop gain of 1kΩ. Assume each transistor carries a collector bias current of 1 mA, β = 100, V_A = ∞, and R_F is very large.
 (a) Determine the values of R_C and R_M for an open-loop gain of 20kΩ and an open-loop output impedance of 500Ω. (b) Compute the required value of R_F. (c) Calculate the closed-loop I/O
- 4B. Identify the sense and return mechanisms, and the polarity of the feedback in the circuits of Fig. Q4(B1) and (B2).
- 4C. Estimate the input capacitance of the source follower shown in Fig. Q4(C). Assume $\lambda \neq 0$.

- 5A. For the oscillator circuit in Fig. Q5(A), obtain an expression for frequency of oscillation. Determine the start-up condition for the oscillations.
- 5B. Show that a Class B Amplifier has a maximum conversion efficiency of 78.5.
- 5C. For the push-pull stage of Fig. 5(C), sketch the base current of Q_1 as a function of V_{in} .

(5+3+2)

impedances.