Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: LOGIC DESIGN (ECE - 205)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer ANY FIVE full questions.
- Missing data may be suitably assumed.
- 1A. Given $f(a,b,c,d) = \sum m(0,1,4,6,7,9,11,13,15) + \sum d(2,3,10,12)$. Simplify the expression using K-map and answer the following questions.
 - a) The reduced expression has ...minterms withvariables each.
 - b) Realizing the reduced expression using 2 input AND gates; two input OR gates and NOT gates requiresAND gates, ...OR gates andNOT gates.
 - c) There areessential prime implicants.
 - d) The reduced expression can also be realized usingtwo input AND gate/s,two input OR gate/s ,two input XOR gate/s andNOT gate/s.
 - e) In the reduced expression every minterm contains variable...
- 1B. Using positive edge triggered J-K flip-flops design a suitable circuit that will give an output clock with 1/16 of input clock frequency. Draw the relevant waveforms.
- 1C. Implement the following function using a 8:1 MUX using a,b and c as select inputs. $F(a,b,c,d) = \sum m(1,2,4,5,7,9,11,12)$.

(5+3+2)

- 2A. Consider the decoder circuit diagram shown in FIGURE 2A. Plot 'y' considering all possible combinations of the inputs a, b and c.
- 2B. The working of a clocked MN flip-flop is as follows when both M and N are low the flip-flop output sets, when M is low the flip-flop output doesn't change, when M input is high the flip-flop output toggles and when both M and N are high the flip-flop resets. Obtain the flip-flop using a JK flip-flop.
- 2C. Draw the state diagram and write the state table for a Mealy type serial binary adder

(5+3+2)

- 3A. Simplify the following Boolean expression using i) Quine Mc-Cluskey method ii) VEM with 'z' as the map entered variable. $F(w, x, y, z) = \overline{xyz} + \overline{wxyz} + \overline{wxyz} + \overline{wxyz}$.
- 3B. Draw the ASM chart for a full subtractor.
- 3C. Write the flow table for an asynchronous sequential circuit with 2 inputs X and Y and one output Z. Whenever Y is 1, input X is transferred to Z. When Y is 0, output does not change for any change in X.

(5+3+2)

- 4A. Design a synchronous counter to count the sequence 0,2,4,6,1,3,5,7 and repeat. Use a flip-flop having the truth table given in TABLE 4A.
- 4B. Design a single digit BCD adder using 4 bit binary adder block

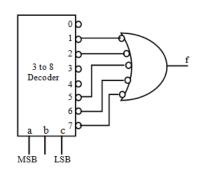
ECE 205 Page 1 of 2

4C. Given that $(292)_{10} = (1204)_b$. Determine the base 'b'.

(5+3+2)

- 5A. Design an asynchronous sequential circuit to perform the following task. Switch ON a water pump when the water level goes below a level X_1 and keeps it ON till the water level goes below X_2 . Pump is switched OFF when the water level exceeds X_2 and it remains OFF till water level goes below X_1 . Note that X_i goes high when the water level goes above it and goes low when the water level goes below it.
- 5B. Define the following: (1) Fan out (2) Noise Margin (3) Propagation delay
- 5C. The message below has been encoded using even parity Hamming code and assumed to be received with single bit error. Determine the transmitted message. 1000011110100100000000101011.

(5+3+2)


- 6A. Design a Mealy type non-overlapping sequence detector using D flip-flops to detect the presence of the sequence 1010 and 1100.
- 6B. Simplify the following Boolean expression and implement the simplified expression using NAND gates. $F(A, B, C, D) = AB + A\overline{B}C + B\overline{C}$
- 6C. Starting from MSB, a binary number 10111011 is fed to a 8 bit SIPO with data entering from left. The initial content of shift register is assumed to be 10101010. What will be the shift register output at the end of 2 clock pulses and at the end of 8 clock pulses?

(5+3+2)

TABLE 4A

Α	В	Q _{n+1}
0	0	Q_n
0	1	1
1	0	0
1	1	\overline{Q}_n

FIGURE 2A

ECE 205 Page 2 of 2