Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

THIRD SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: LOGIC DESIGN (ECE -2105)

TIME: 3 HOURS MAX. MARKS: 50

Instructions to candidates

- Answer **ALL** questions.
- Missing data may be suitably assumed.
- 1A. For the given Binary number $B_3B_2B_1B_0$, find its equivalent gray code $G_3G_2G_1G_0$. Note that B_3 and G_3 are MSBs. Implement G_3 using basic gates, G_2 using 3:8 decoders, G_1 using 8:1 MUX, G_0 using 4x4x2 PAL.
- 1B. Simplify the following Boolean expression using Quine Mc-Cluskey method. $F(A,B,C,D) = \sum m(1,2,3,5,9,12,14,15) + \sum d(4,8,11)$.
- 1C. Given $F(A,B,C,D,E) = \prod M(0,1,4,5,10,11,26,27)$. Find the minimal product and implement using NOR gates.

(5+3+2)

- 2A. Design a 4 bit multiplier which multiplies $a_3a_2a_1a_0$ and $b_3b_2b_1b_0$ using half adders, full adders and AND gates only.
- 2B. Design a 3 bit odd parity generator and corresponding checker using 4:1 MUXes.
- 2C. Plot the transfer characteristics of a transistor TTL inverter and indicate the IC parameters

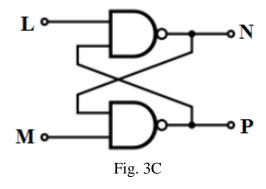
(5+3+2)

- 3A. Design synchronous overlapping sequence detector which will detect "010" and "101" sequence in a binary input stream using D flip-flops
- 3B. Design synchronous mod 6 down counter using T flip-flops.
- 3C. Write the truth table and transition table for the circuit shown in Fig.3C

(5+3+2)

- 4A. Design a fundamental mode asynchronous sequential circuit using D latch satisfying following conditions-
 - (i) A water tank has two sensors X_1 and X_2 . The sensor X_1 is kept at lower level of the tank and X_2 at the top level of the tank.
 - (ii) The system has one output S which will become high when water level in the tank goes below X_1 and it will remain high till water level reaches X_2 .
- 4B. Design a bidirectional 3 bit shift register using D flip-flop and 2:1 Mux.
- 4C. Draw ASM chart for a 3 bit synchronous up-down counter.

(5+3+2)


ECE 2105 Page 1 of 2

5A. Write excitation table, next state table, state table and state diagram for the following synchronous sequential circuit. $J_1=X$ $K_1=YQ_2$ $J_2=X+Q_1$ $K_2=Y$ $Z_1=Q_1Q_2$ $Z_2=Q_1+Q_2$

Where X_1, X_2 are inputs, Z_1, Z_2 are outputs and Q_1, Q_2 are flip-flop outputs

- 5B. (i) Convert SR flip-flop to JK flip-flop
 - (ii) Convert D flip-flop to T flip-flop
- 5C. Design ripple decade up counter using negative edge triggered JK flip-flops

(5+3+2)

ECE 2105 Page 2 of 2