

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

III SEMESTER B.TECH (MECH/IP/MT/AUTO/AERO) END SEMESTER MAKEUP EXAMINATIONS, DEC 2015

SUBJECT: ENGG. MATHEMATICS III [MAT 2101]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ALL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Solve $(x^3 + 1)y'' + x^2y' - 4xy = 2$, $y(0) = 0$, $y(2) = 4$ with $h = 0.5$.	04
1B.	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$, $0 < x < 1$, $0 < y < 1$ subjected to the conditions $u(x, 1) = u(0, y) = 0$, $u(1, y) = 9(y - y^2)$, $u(x, 0) = 9(x - x^2)$ by taking $h = \frac{1}{3}$	03
1C.	Show that $\vec{F} = (2xy + z^3) i + x^2 j + 3xz^2 k$ is conservative. Find the work done in moving an object from $(1, -2, 1)$ to $(3, 1, 4)$ in this field.	03
2A.	Solve $\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$ $0 < x < 1$, $t > 0$ with $u(x, 0) = 0$, $\frac{\partial u}{\partial t}(x, 0) = 0$, $u(0,t) = 0, u(1,t) = 100 \sin \pi t$. Compute <i>u</i> for four time steps with $h = 0.5$.	04
2B.	Solve $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = -81xy, \ 0 < x < 1, \ 0 < y < 1, \ u(0, y) = 0,$ $u(x, 0) = 0, \ u(1, y) = u(x, 1) = 100 \text{ with } h = \frac{1}{3}.$	03
2C.	Obtain the Fourier series for $f(x) = \begin{cases} 1 + \frac{2x}{\pi}; & -\pi \le x \le 0\\ 1 - \frac{2x}{\pi}; & 0 \le x \le \pi \end{cases}$	03
3A.	Verify Green's theorem in the plane for $\oint (xy + y^2)dx + x^2 dy$, where the closed curve of the region is bounded by $y = x$ and $y = x^2$.	04

m	Manipal Institute of Technology, Manipal								
lanipal ED BY	(A Constituent Institute of Manipal University)								
3B.	Find a unit normal to the surface $-x^2yz^2 + 2xy^3z = 1$ at the point P(1, 1, 1).								
3C.	Find the half range sine series for $f(x) = x$ in (0, 2)								
	Find the directional derivative for the scalar function								
4A.	$ \emptyset(x, y, z) = x^2 yz + 4xz^2 $ at $p(1, -2, -1)$ In the direction of $2i - j - 2k$.								
	From the Fourier integral representation show that								
4B.									
4C.	and hence show that $\int_0^{t} \left(\frac{t}{t}\right)^4 dt = \frac{1}{3}$.								
5A.									
5B.	Solve the partial differential equation $U_{xx} - 4U_{xy} + 3U_{yy} = 0$ using the transformation $v = x + y$, $z = 3x + y$.								
	Obtain the constant term and the coefficient of the first order sine and cosine term in the Fourier series expansion of								
5C.	x (in degree)	0	60	120	180	240	300	03	
JU.			18	24	28	26			