

Manipal Institute of Technology, Manipal

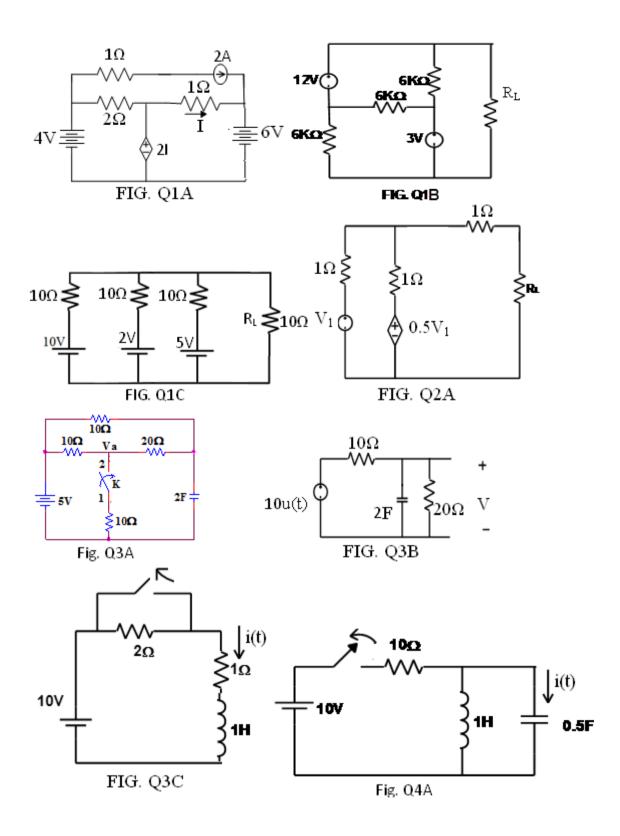
(A Constituent Institute of Manipal University)

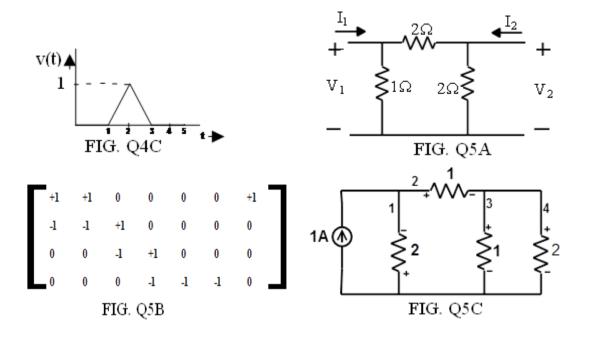
THIRD SEMESTER B.TECH (INSTRUMENTATION & CONTROL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ELECTRICAL CIRCUIT ANALYSIS [ICE 2101]

Time: 3 Hours

MAX. MARKS:


Instructions to Candidates:


✤ Answer ALL the questions.

• Missing data may be suitably assumed.

1A.	In the network shown in FIG. Q1A determine a) current I b) current supplied by 4V battery using loop analysis.	5
1B.	For the circuit shown in FIG. Q1B, find the value of R_L for maximum power transfer.	3
1C.	Determine the current in R_L in the circuit shown in FIG. Q1C using superposition theorem.	2
2A.	Obtain the Norton's equivalent for the circuit shown in FIG. Q2A.	5
2B.	A series circuit with $R = 5\Omega$, $C = 20\mu F$ and a variable inductance L has an applied voltage $V = 10 V$ with a frequency of 1000 rad/s. L is adjusted until the voltage across the resistor is maximum. Find the voltage across each element.	3
2C.	Compare series and parallel resonance circuits.	2
3A	In the network shown in FIG. Q3A, steady state is reached with switch K opened . At $t=0$ switch is closed. Determine the values of Va(0-) and Va(0+).	5
3B.	For the network shown in FIG. Q3B, find V, $dV/dt \& d^2V/dt^2$ at t=0+.	3
3C.	For the network shown in FIG. Q3C, a steady state is reached with switch closed. At $t=0$ the switch is opened. Solve for $i(t)$ for $t\geq 0$.	2
4A.	In the network shown FIG. Q4A, the switch is opened at t=0, a steady state having previously been attained. Find $i(t)$, for t≥0 using Laplace transform.	5
4B.	Sketch and write the Laplace transform of $x(t) = r(t) - r(t-1) - r(t-3) + r(t-4)$	3
4C.	Express the waveform shown in FIG. Q4C using basic signals and write the Laplace transform.	2
5A.	Find Y and Z parameters for the network shown in FIG. Q5A	5
5B.	The reduced incidence matrix of a linear graph is shown in FIG. Q5B.Draw the oriented graph. Select a tree with the branches 1,3,4,5 and construct tie set matrix.	3

5C. For the network shown in FIG. Q5C, draw the oriented graph. Select a tree with branches 1 & 3 and construct the cut-set matrix.
