Mar	(A Constituent Institute of Manipal University)	IS POWER		
INSPIREI	IV SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)	•		
MAKE UP EXAMINATIONS, JAN 2016				
SUBJECT: ANALOG SYSTEM DESIGN [ELE 208]				
	REVISED CREDIT SYSTEM			
	Time: 3 Hours13 JANUARY 2016MAX. MARKS: 50			
Instructions to Candidates:				
	 Answer ANY FIVE FULL questions. Missing data may be suitably assumed. 			
1A.	With neat circuit schematics, develop the expressions for gain, input and output resistances for an op-amp operating in non-inverting mode with negative feedback.	(05)		
1B.	Using a single Op-amps, design a circuit to obtain output voltage $V_0 = V_A - V_B - V_C$. Select feedback resistance Rf = 10 k Ω .	(03)		
1C.	An Op-amp 741 has a slew rate of $0.5V/\mu$ sec. Calculate the cut-off frequency for a voltage follower circuit using above op-amp if the peak of sine wave output to be 1V.	(02)		
2A.	Design a practical Integrator whose cutoff frequency in 1 kHz. DC gain is 40 dB. Assume capacitance $C = 0.01 \mu$ F.Hence draw the circuit schematic with all component details.	(05)		
2B.	Design a practical Differentiator to differentiate the signals in the range 1 kHz - 10kHz. Assume suitable capacitance values. Hence draw the circuit schematic with all component details.	(05)		
3A.	Design a square and triangular wave form generator to generate a triangular wave of 4KHz. Derive the expression used. Assume capacitor C= 0.01μ F and V _{peak} of triangular waveform is 5V.	(03)		
3B.	Design a Schmitt trigger to get the transfer characteristic shown in fig Q3B. Hence draw the output when the input $V_i(t)=5 \sin 314t$. Assume the resistance connected across the op-amp terminal and ground is $10K\Omega$.	(04)		
3C.	With a neat circuit schematic explain the working of precision rectifier.	(03)		
4A.	Design an active second order low pass Butterworth filter circuit with a cut off frequency 1KH_{Z} . Assume capacitors of 0.01 μ F, if required.	(04)		
4B.	With a neat circuit schematic, explain the working principle of voltage controlled oscillator. Derive an expression to estimate the output frequency.	(03)		
4C.	With a neat circuit schematic explain the working of OP-AMP based log antilog amplifier	(03)		

Reg. No.

प्रज्ञानं ब्रह्म

 \mathcal{A}

5A.	Discuss the working of a Phase Locked Loop with suitable block diagram.	(04)
5B.	Using 555 timer draw the circuit required to generate the waveform shown in Fig 5B. Generate V_02 form V_01 .Assume Capacitance of 0.1uF	(04)
5C.	Briefly explain the need for wave shaping circuit in the monostable multivibrator mode.	(02)
6A.	With a neat circuit diagram, derive the expression for common mode rejection ratio of a emitter coupled differential amplifier	(04)
6B.	With suitable circuit diagrams, derive expressions for Input and Output Impedance with feedback for a Current Series feedback topology.	(04)
6C.	List any four characteristics of negative feedback amplifiers.	(02)

