Reg.No					

MANIPAL UNIVERSITY, MANIPAL

FIRST SEMESTER M.SC (APPLIED MATHEMATICS & COMPUTING) END SEMESTER EXAMINATION, NOVEMBER, 2015

SUB: DIFFERENTIAL EQUATIONS(MAT - 601) (REVISED CREDIT SYSTEM)

Time : 3 Hrs.

Max.Marks : 50

Note : a) Answer any FIVE full questions. b) All questions carry equal marks (3+ 3+ 4).

- 1A. If y = x is one of the solution of the differential equation $(x^2 + 1)y'' 2xy' + 2y = 0$. Find the general solution of $(x^2 + 1)y'' - 2xy' + 2y = 6(x^2 + 1)^2$.
- 1B. Obtain the Rodrigue's formula $P_n(x) = \frac{1}{n! 2^n} \frac{d^n}{dx^n} (x^2 1)^n$ where $P_n(x)$ is Legendre polynomial of degree n.
- 1C. State and prove uniqueness theorem for Let $L(y) = y^{(n)} + a_1 y^{(n-1)} + a_2 y^{(n-2)} + \dots + a_n y = 0 \text{ on an interval I containing a point}$ x₀. With usual initial conditions
- 2A. Find a function $\varphi(x)$ which has a continuous derivative on $0 \le x \le 2$ which satisfies $\varphi(0) = 0$, $\varphi'(0) = 1$ and y'' - y = 0 for $0 \le x \le 1$ and y'' - 9y = 0 for $1 \le x \le 2$.

2B Prove that (i)
$$J_{5/2}(x) = \sqrt{\frac{2}{\pi x}} \left\{ \frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right\}$$

(ii) $J_n''(x) = \frac{1}{4} \left[J_{n-2}(x) - 2 J_n(x) + J_{n+2}(x) \right]$

2C. (i) Using the annihilator method solve $y'' + y' = 4 x^2 e^x$

(ii) Suppose ϕ is a function having continuous derivative on $0 \le x < \infty$ such that $\phi'(x) + 2\phi(x) \le 1$ for all x and ϕ (0) = 0. Show that ϕ (x) $\le \frac{1}{2}$ for $x \ge 0$.

3A.(a) Show that the functions φ_1 , φ_2 , defined by $\varphi_1 = x^2$, $\varphi_2 = x | x |$, are linearly independent for $-\infty < x < \infty$.

(b) Compute the Wronskian of these functions. Compare the two results and explain your answer.

3B. Solve in series
$$x \frac{d^2y}{dx^2} + \frac{dy}{dx} + xy = 0$$
.

3C Prove that (1)
$$H'_{n}(x) = 2 n H_{n-1}(x)$$

(2) $2 x H_{n}(x) = 2 n H_{n-1}(x) + H_{n+1}(x)$

4A. If $\varphi_1(x)$ is a solution of a differential equation $y'' + a_1(x) y' + a_2(x) y = 0$ then show that $\varphi_2(x) = \varphi_1(x) f(x)$ is a solution of this equation provided f'(x) satisfies the equation $(\varphi_1^2 y)' + a_1(x) (\varphi_1^2 y) = 0$

- 4B Find the eigen values and the eigen functions of $y'' + \lambda y = 0$, $y(0) = y(\pi) = 0$.
- 4C If φ_1 , φ_2 are two solutions of L(y) = 0 on an interval I containing a point x_0 then prove that $W(\varphi_1, \varphi_2)(x) = e^{-a_1(x - x_0)}W(\varphi_1, \varphi_2)(x_0)$

5A. Solve by method of variation of parameters y''' + y' + y = 1

5B. (i) Show that $\int_{-1}^{1} x^2 P_{n-1}(x) P_{n+1}(x) dx = \frac{2n (n+1)}{(2n-1)(2n+1)(2n+3)}$

(ii) Prove that $L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x}).$

5C. Find the solution of
$$x^2 y'' + 9x y' + 12y = 0$$
 by series method.

- 6A. Obtain the series solution of $(1-x^2)\frac{d^2y}{dx^2} 2x\frac{dy}{dx} + n(n+1)y = 0$, n is a real number.
- 6B. Let φ_1, φ_2 be be two solutions of $L(y) = y'' + a_1 y' + a_2 y = 0$. Then prove that φ_1, φ_2 are linearly independent on an interval I if and only if $W(\varphi_1, \varphi_2)(x) \neq 0$.
- 6C. Prove that $\int_{0}^{1} x J_{n}(\alpha x) J_{n}(\beta x) dx = \begin{cases} 0 , & \alpha \neq \beta \\ \frac{1}{2} [J_{n+1}(\alpha)]^{2} , & \alpha = \beta \end{cases}$ where α , β are the roots of $J_{n}(x) = 0$.
