Reg.No									
--------	--	--	--	--	--	--	--	--	--

MANIPAL UNIVERSITY, MANIPAL FIRST SEMESTER M.SC (APPLIED MATHEMATICS & COMPUTING) END SEMESTER EXAMINATION – NOVEMBER / DECEMEBR 2015

SUBJECT: REAL ANALYSIS (MAT 605)

Time	:	3	Hrs.
------	---	---	------

Max.Marks : 50

b) All questions carry equal marks (3 + 3 + 4)

- 1A. Show that a subset E of the real line R is connected if and only if it has the following property: If $x \in E$, $y \in E$, and x < z < y, then $z \in E$.
- 1B. Show that every neighbourhood is an open set.
- 1C. Show that the set of real numbers R has Archimedean property and hence show that there exists a rational number between any two real numbers.
- 2A. Show that the sequence of functions $\{f_n\}$ defined on E, converges uniformly on E if and only if for every $\varepsilon > 0$, there exists an integer N such that $m \ge N$, $n \ge N$, $x \in E$ implies $|f_n(x)-f_m(x)| < \varepsilon$.
- 2B. Suppose f is a continuous mapping of a compact metric space X into a metric space Y. Then show that f(X) is compact.
- 2C. Let $e = \sum_{n=0}^{\infty} \frac{1}{n!}$. Show that 2 < e < 3. Also show that e is irrational.
- 3A. Let $\{p_n\}$ be a sequence in a metric space X. If $p \in X$, $p' \in X$, and if $\{p_n\}$ converges to p and to p', then show that p' = p.
- 3B. Obtain the circle of convergence and radius of convergence for the series $\sum_{n=0}^{\infty} \frac{(n!)^2}{(2n)!} z^{2n}$

- 3C. Suppose K is compact, and
 - (i) $\{f_n\}$ is a sequence of continuous functions on K,
 - (ii) $\{f_n\}$ converges pointwise to a continuous function f on K,
 - (iii) $f_n(x) \ge f_{n+1}(x)$ for all $x \in K$, n = 1, 2, 3, ...

Then show that $f_n \rightarrow f$ uniformly on K.

- 4A. Define a complete metric space. In any metric space X, show that every convergent sequence is a Cauchy sequence.
- 4B. If X is a complete metric space, and if ϕ is a contraction of X into X, then show that there exists one and only one $x \in X$ such that $\phi(x) = x$.
- 4C. Show that a mapping of a metric space X into a metric space Y is continuous on X if and only if $f^{-1}(V)$ is open in X for every open set V in Y.
- 5A. If P*is a refinement of a partition P then show that $L(P, f, \alpha) \le L(P^*, f, \alpha)$.
- 5B. Show that $f \in R(\alpha)$ on [a, b] if and only if for every $\varepsilon > 0$ there exists a partition P such that U(p, f, α) L(P, f, α) < ε .
- 5C. If $f_1 \in \mathbf{R}(\alpha)$ and $f_2(\alpha)$ on [a, b] then show that $f_1 + f_2 \in \mathbf{R}(\alpha)$ and that $\int_a^b (f_1 + f_2) \, d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha.$
- 6A. Define a compact set. If F is a closed subset and K is compact subset of a metric space X, show that $F \cap K$ is compact.
- 6B. Let {E_n}, n = 1, 2, 3, ..., be a sequence of countable sets, and put $S = \bigcup_{n=1}^{\infty} E_n$. Show that S is countable.
- 6C. Let X be a metric space. Let $Y \subset X$. Show that a subset E of Y is open relative to Y if and only if $E = Y \cap G$ for some subset G of X.