Keg.no

MANIPAL UNIVERSITY, MANIPAL

THIRD SEMESTER M.SC (APPLIED MATHEMATICS & COMPUTING) END SEMESTER MAKE UP EXAMINATION –December / January 2015-16

SUB : Formal Language and Theory of computation

Time : 3 Hrs.

Max.Marks : 50

Note : a) Answer any FIVE full questions. b) All questions carry equal marks (3 +3+4)

- 1A. Sketch the block diagram of a finite automaton and explain it's parts.
- 1B. Design FA which checks whether a given decimal number is divisible by three.
- 1C. Prove that if L is regular then L^T is also regular.
- 2A. Define Moore machines.

Construct an equivalent machine from the table below

	Next State		
	a=0	a=1	
State	State	State	O.P
\rightarrow q ₀	q ₃	q_1	1
\mathbf{q}_1	\mathbf{q}_1	\mathbf{q}_2	0
\mathbf{q}_2	q_2	\mathbf{q}_3	0
\mathbf{q}_3	q ₃	\mathbf{q}_0	0

- 2B. Construct a grammar which generates all odd integers up to 999.
- 2C. Show that the set $L = \{ a^{i^2} | i \ge 1 \text{ is a prime } \}$ is not regular.
- 3A. Let L be the set of all palindromes over {a,b}.Construct a grammar G generating L.
- 3B. Explain Chomsky classification of languages,.
- 3C. Consider the grammar G given by $S \rightarrow 0SA_12, S \rightarrow 012, 2A_1 \rightarrow A_12, 1A_1 \rightarrow 11$. Test whether (i) 00112 ϵ L(G) and (ii) 001122 \in L(G).
- 4A. Prove $(1 + 00^*1) + (1 + 00^*1)(0 + 10^*1)^*(0 + 10^*1) = 0^*1(0 + 10^*1)^*1$.
- 4B. Construct a regular expression corresponding to the following FA shown in figure using algebraic method.

4C. Construct a minimum state automaton equivalent to a given automaton M whose transition table is :

States	In	put
······	a	Ь
$\rightarrow q_0$	90	93
q_1	92	95
92	93	94
93	90	95
94	90	96
95	91	94
(96)	91	93

5A. Define comparison method. Determine whether the given two machines are equivalent by comparison method

5B. Construct a deterministic acceptor equivalent to $M = (\{q_0, q_1, q_2, \}, \{a, b\}, \delta, q_0, \{q_2\})$ where δ is as given by the table:

- 5C. State and prove pumping lemma.
- 6A. Show that Grammar $S \rightarrow aB/ab, A \rightarrow aAB/a, B \rightarrow ABb/b$ is ambiguous
- 6B. Obtain an equivalent automaton without \in moves with proper explanation to the figure below.

6C. Prove that every monotonic grammar is equivalent to a type 1 grammar.
