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1. (a)  Show that for any graph G, either G or �̅� is connected. Also show that if for a       

         connected graph G, 𝑑𝑖𝑎𝑚(𝐺) ≥ 3, then 𝑑𝑖𝑎𝑚(�̅�) ≤ 3 and hence show that  

         diameter of a self complementary graph is either 2 or 3.  (4) 

(b)   Show that every planar graph is five colourable.   (3) 

(c)   If G is a connected graph on 𝑝(≥ 3) vertices with 𝛿 ≥
𝑝

2⁄ , then show that G is    

        Hamiltonian.        (3) 

       2. (a)  Define vertex connectivity of a graph. Show that a (𝑝, 𝑞) graph G with 𝑝 ≥ 3 is 2- 

                      connected if and only if any two vertices of G are connected by atleast two  

                     vertex disjoint paths.        (4) 

 (b) Show that a matching M in G is a maximum matching if and only if  

                     G contains no M-augmenting path.     (3) 

  (c)  Show that a (𝑝, 𝑞)graph G is a tree if and only if 𝑝 = 𝑞 + 1 and G is   

                    connected.        (3) 

        3.   (a)  Define Ramsey number 𝑟(𝑚, 𝑛). Show that 𝑟(𝑘, 𝑘) ≥ 2
𝑘
2.  (4) 

(b) Show with usual notation that, if G is simple graph then the chromatic 

polynomial 𝜋𝑘(𝐺) satisfies the relation 𝜋𝑘(𝐺) = 𝜋𝑘(𝐺 − 𝑒) − 𝜋𝑘(𝐺. 𝑒). (3) 

(c)   For any (𝑝, 𝑞) graph G with line graph 𝐿(𝐺), show that 𝐴(𝐿(𝐺)) = 𝐵𝑇𝐵 −

2𝐼𝑞 where 𝐵 is the incidence matrix of G and 𝐴(𝐿(𝐺)) is the adjacency matrix of 

𝐿(𝐺).         (3) 
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    4.   (a)  Find the chromatic polynomial of the graph given below.  (4) 

 

               (b)  Write the adjacency matrix of the following graph and hence find number of  

                       walks of length three between u and v.    (3) 

 

 (c) With usual notation show that (i) 2√𝑝 ≤ 𝜒 + �̅� ≤ 𝑝 + 1, (ii) 𝑝 ≤ 𝜒�̅� ≤ (
𝑝+1

2
)

2

. 

        5. (a) Show that complement of a strongly regular graph with parameters (𝑛, 𝑟, 𝜆, 𝜇) is  

                  also strongly regular.        (4) 

(b). Show that a connected graph is isomorphic to its line graph if and only if it is a  

                  cycle.          (3) 

(c) Show that in a bipartite graph, the number of edges in a maximum matching is   

      equal to the number of vertices in a minimum covering.    (3) 

        6.   (a)   With usual notation show that 𝛼0 + 𝛽0 = 𝛼1 + 𝛽1 = 𝑝.   (4) 

               (b)   Find the number of edges in the graph 𝐺1 × 𝐺2 and 𝐺1[𝐺2], when 𝐺1 = 𝐾3 and  

                        𝐺2 = 𝐶4.          (3) 

(c)  Show that in a critical graph, no vertex cut is a clique. Also show that every 

critical graph is a block.        (3) 
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