REG					
No					

MANIPAL UNIVERSITY, MANIPAL

FIRST SEMESTER M.Sc(Physics) END SEMESTER EXAMINATION, DECEMBER, 2015

SUB: CLASSICAL MECHANICS (PHY- 603) (REVISED CREDIT SYSTEM)

TIME: 3 HRS. MAX.MARKS: 50

NOTE:(A) ANSWER ANY FIVE FULL QUESTIONS. (B) EACH QUESTION CARRIES 10 MARKS.								
1 A	Show that the total energy of a particle in a conservative field is constant.	[5]						
1B	Discuss the motion of a projectile in a resistive medium, with the retarding force proportional to its velocity. Obtain the position of the projectile at any instant.							
2A	Obtain the equation of the parabolic orbit for a body in a two-body system in an inverse-square-law field, and discuss the case of circular orbits for the body.							
2B	Using variational principle, obtain the path of a particle moving in minimum transitime, in a conservative force field, starting from rest.							
3A	Obtain the general expression for kinetic energy in the case of a double pendulu terms of generalized coordinates.							
3B	Show that the plane of oscillation of Focault pendulum at latitude θ rotates throug 2π sin θ everyday.	gh [6]						
4A	Prove the following properties of the poisson brackets: (i) $[u+v, w] = [u, w] + [v, w]$ (ii) $[u, v w] = [u, v] w + v [u, w]$.	[4]						
4B	Obtain the solution of the one-dimensional harmonic oscillator by Hamilton-Jacobi method.							
5A	Discuss the oscillations in 2 coupled simple pendulums: Obtain the expressions for coordinates of the pendulum. [4]							
5B	Explain: (i) strain tensor, (ii) dilation, with reference to elasticity.	[6]						
6A	Obtain the equation of continuity for mass densities.	[5]						
6B	State and prove Bernoulli's theorem.	[5]						