Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

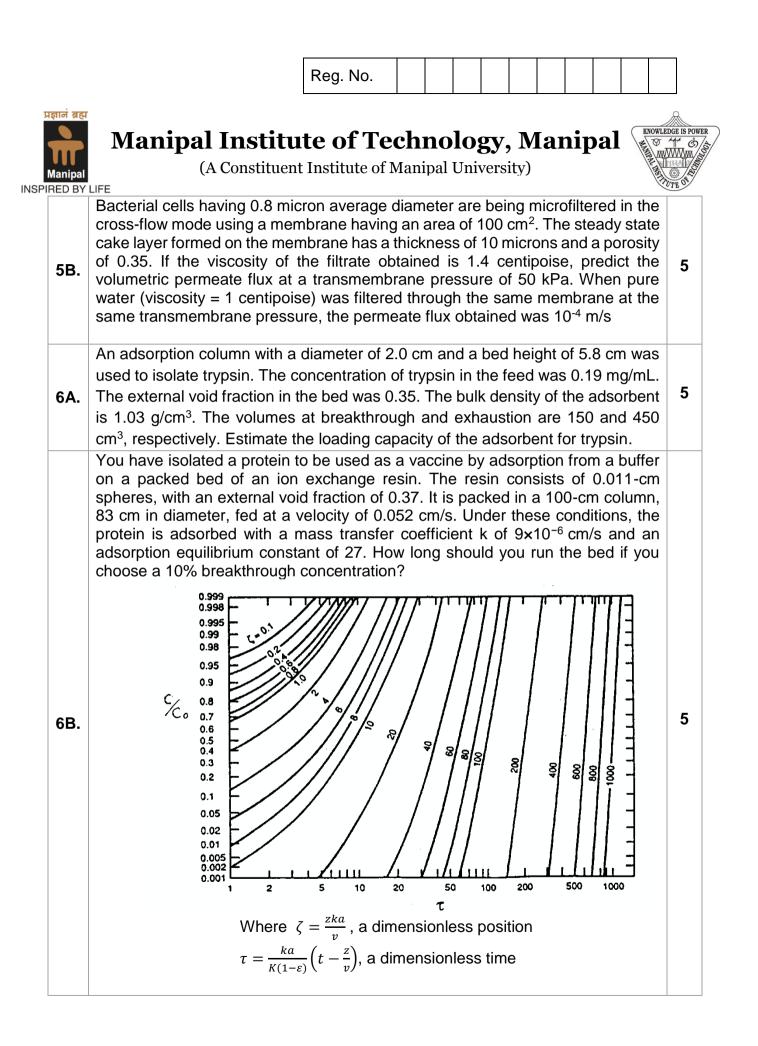
I SEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY)

END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ADVANCED BIOSEPARATION PROCESSES [BIO 507]

REVISED CREDIT SYSTEM

Time: 3 Hours


MAX. MARKS: 50

Instructions to Candidates:

- * Answer **ANY FIVE FULL** the questions.
- ✤ Missing data may be suitable assumed.

1A.	These ce diameter microcart the micro withdraw of 1.5; the Estimate	ell-laden bea of 150 <i>m</i> m riers to prod ocarriers ar n to isolate e carrier-free	ads or "mic . A 50-liter uce a viral v e allowed the vaccine e fluid has a g time by a	rocarriers' stirred ta vaccine. A to settle. a. The tan	' have a de nk is used t fter growth, The micro k has a liqu f 1.00 g/cm ²	nsity of o cultiva the stirr ocarrier- id heigh ³ and a v	1.02 g ate cel ing is s free f it to dia viscosi	ktran beads. g/cm ³ and a ls grown on stopped and luid is then ameter ratio ty of 1.1 cP. reach their	5
1B.	 A biochemist discovers and purifies a net table below Procedure Crude Extract Precipitation (Salt) Precipitation (pH) Ion exchange Cellulose Chromotography Affinity Chromotography Size exclusion Chromotography Calculate the yield and specific activity a efficient and the least efficient purification 				Total Protein (mg) Active 25000 4000 5000 3000 4000 1000 200 8000 50 7500 45 6750 at each fraction and pick			ity (units) 000 000 000 00 00 00 00 00 00 00 00 00	5
2A.	Calculate specific resistance of cake and filter medium resistance on basis of the following data for a constant pressure filtration. The mass of solid deposited per unit volume of filtrate was 24.6 g/L on a filter medium of area 5 cm². The pressure drop was 500 psi and viscosity of filtrate was 1.1×10^{-3} kg/m sTime (s)610162331V (cm³)3040506070							5	
2B.								cal material) min at 20ºC.	5

ज्ञानं ब्रह्म Manipal			e of Technol		
RED BY	The height	•	n the vessel was 30 (ate the diameter of the		ty of kaolin
	A bead mi	Il was used to grind ize reductions for th	Penicillium filaments ne same mass of ma Average Final	and the energy r	•
		radius (microns)	radius (microns)	Required (J)	
		6	5.5	1.8	
3A.		5	4.5	2.7	
-		4	3.5	4.3	
		3	2.5	8.0	-
		2	1.5	20	
	from 5 mic bead mill.	rons to 1 micron for	y required to reduce the same mass of <i>Per</i> the equilibrium relation	nicillium as used in	n the same
3B.		o contact 4.7 L of to	x ² = (0.001 mol/L) y luene containing 0.00 no acid can we extra		with 1 L of
4A.	added to 1 was found were adde Assume th	00 mL of a 50 mg/m to precipitate. How n ed to 100 mL of a s nat the dielectric cons on of the two solvents	water is 390 kg/m ³ . Water is 390 kg/m ³ . Water is 390 kg/m ³ . Water nuch protein would primilar protein solution stant of the medium vas. Dielectric constant	in water, 33% of ecipitate if 100 mL at the same ter aries linearly with	the protein of ethanol nperature? volumetric
4B.	Leucine de cereus cel of homog polyethyler volume ra phase wer in the top	ehydrogenase was re Is using an aqueous enate initially conta ne glycol-salt mixtur tio was 1.3. Leucine re found to be 5.29 L and bottom phase v	ecovered from a homo two phase polyethyle aining 5.44 U/mg p e was added and two e dehydrogenase act J/mL and 1.61 U/mL. vere 0.389 mg/mL ar cation fold and & % yi	ene glycol-salt sys protein were pro phases formed. tivity in the top a The concentration and 1.06 mg/mL re	tem. 100 L cessed. A The phase and bottom
				$f K_1 = 7.5$ and	K 70

