

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

I SEMESTER M.TECH (INDUSTRIAL BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: BIOPROCESS ENGINEERING [BIO 501]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

1A.	The isolated <i>actinomycetes</i> strain have to be preserved to use in future, which method is best suitable for preservation of <i>actinomycetes</i> ?								3M					
1B.	What are the differences in cell envelop structure between gram-negative and gram-positive bacteria? These differences become important if you wish to genetically engineer bacteria to excrete proteins into the extracellular fluid.							3М						
1C.	You are asked to develop a medium for production of an antibiotic. The antibiotic is to be made in large amounts (100000 I fermentation) and is relatively inexpensive. The host cell is a soil isolate of a fungal species, and the nutritional requirements for rapid growth are uncertain. Will you try to develop a defined or complex medium? Why?							4M						
2A.	(H, J, I listed, Trial no 1 2 3 4 5 6 7 8 9	<pre>< anc perfo X1 L L L L L L</pre>	L) w rm th X2 L H H H H H	ere s e AN X3 L L H L H H H H	electe OVA X4 L L L L H H H H	ed. Thand ional and ional	H H H H H H L L L L	y the X7 H L L H L H H H H	oxida signif D1 L H H H L L L H	ASE ac icant D2 H L L H H H L L	tivity parar D3 H L H L H L L H	of the meter D4 L L H H H L H	e 12 trials are s. ACTIVITY (U/mL) 2.823 0.289 0.57 0.95 0.459 0.07 0.508 1.013 0.715	10M
	10	Н	Н	L	Н	L	L	L	Н	Н	Η	L	0.285	
	11	H	L	H	H	L	H			L	H	H	0.814	
	12	I H	L	H	I L	I L	I L	H	H	H	L	H	1.31	

Reg. No.								
----------	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

	LIFE					\sim				
	The hydrolysis shows inhibitior	of urea by ure h. The data for t	ease is only pa he hydrolysis of	rtially understo the reaction ar	od reaction and					
	Substrate	0.2 (M)	, <u>,</u>	0.02 (M)						
	concentration									
		1/V	I (M)	1/V	I (M)					
		(I.min/mole)		(I.min/mole)						
		0.22	0	0.68	0					
		0.33	0.0012	1.02	0.0012	сM				
3A.		0.51	0.0027	1.50	0.0022	OIVI				
		0.76	0.0044	1.83	0.0032					
		0.88	0.0061	2.04	0.0037					
		1.10	0.0080	2.72	0.0044					
		1.15	0.0093	3.46	0.0059					
	a. Determir	ne the Vmax, Ki	m for this reaction	on.						
	b. What typ	e of inhibition r	eaction is this?							
	c. Find out	Kı								
	Explain the diff	erent method o	f immobilization	? How an imm	obilized enzyme					
3B.	can improve th	e stability and	reusability of er	zyme. Write o	n the supporting	4M				
	materials used for this process.									
	It is required to	provide a 40 m	³ fermenter with	n air at a rate o	f 20 m ³ min ⁻¹ for					
	a fermentation lasting 100 hours. From an investigation of the filter material to									
44	be used the optimum linear air velocity was shown to be 0.3 m/s at which									
-17 \	the value of K was 3.07 cm ⁻¹ Determine the dimensions of the filter, if the air									
	in the fermentation plant contained 400 micro-organisms m ⁻³ .									
	Sketch the continuous sterilization performance chart and enlist				and enlist its	2M				
4B.	significance with respect to temperature, time and nutrient quality.									
	How do you calculate the total magnification you are looking at a specimen									
4C.	with? Give an e	example to supp	oort your statem	ient.		3111				
	A microorganis	m is cultured in	a 10 L batch bio	preactor, which	initially					
	contained 100 g/L growth substrate (considered to be a "high" concentration)									
	and 0.2 g/L biomass. You are told by a colleague that the doubling time for									
	this culture (in exponential phase) is very reproducible, with $t_d = 1.25$ hours.									
	After 6 total hours in culture, you measure the cell density and substrate									
	concentration: $t = 6$ h: $x = 1.24$ g/L: $S = 73$ g/L.									
5A.	Estimate:									
	a The maximum specific growth rate umay (h-1)									
	h The vi	a. The maximum specific growth rate, μ_{max} (IT').								
	c The c	ell density at sta	tionary phase (n/l)						
	d The to	tal culture time	required to read	y'_). Shistationary nh	ase (h)					
				on stationary pr						
	Develop a grow	vth model for fi	amentous orda	nisms in terms	of biomass and	ENA				
5B.	list the assumptions made									
6 ^	The equation for		lation of Apotio /	laid from other	ol ic:	3M				
0A.					01 15.					

Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

5M

2M

anipal	(A constituent institute of Manipar Oniversity)
ED BY	LIFE
	$C_2H_5OH + O_2 \longrightarrow CH_3CO_2H + H_2O$. Acetobacter aceti bacteria are added to vigorously aerated medium containing 10 g l ⁻¹ ethanol. After some time, the ethanol concentration is 2 g l ⁻¹ and 7.5 g l ⁻¹ acetic acid is produced. How does the overall yield of acetic acid from ethanol compare with the theoretical yield?
6B.	The growth of baker's yeast on glucose may be simply described by the following equation: $C_6H_{12}O_6 + 3O_2 + 0.48NH_3 \longrightarrow 0.48C_6H_{10}NO_3 + 4.32H_2O + 3.12CO_2.$ In a batch reactor of volume 10^5I , the final desired yeast concentration is 50 gdw/l. using the above reaction stoichiometry: (a) Determine the concentration and total amount of glucose and $(NH_4)_2SO_4$ in the nutrient medium. (b) Determine the Yx/s and Yx/o2.
6C.	Determine the degree of reduction for C_6H_6COOH and $C_5H_7NO_2$.