Reg.No.					

Manipal

MANIPAL UNIVERSITY

First Semester M.Tech. (Chemical Engg.) End - Semester Examinations, NOV/DEC 2015

ADVANCED CHEMICAL ENGINEERING THERMODYNAMICS (CHE - 501)

TIME: 3 HOURS

•

December 01, 2015

MAX. MARKS: 100

Instructions to candidates:

• Answer any FIVE FULL questions

Missing data, if any, may be suitably assumed

1A.	Define: Partial	molar property.	What is th	e thermod	ynamic im	portance? Explain the	(10)			
	graphical procedure for its determination. Derive the analytical equations for its									
	calculation fr	rom the grap	oh. Show	that t	he analy	tical equations are				
	thermodynamic	cally consistent.								
1B.	Explain the various thermodynamic parameters that are used for characterizing non-									
	ideal behavior of (i) pure gas (ii) gas mixture (iii) liquid solutions. Give the defining									
	equations using the standard notations. Show them in a graph wherever possible.									
		-				-				
2.	The vapour pre	essures of Benze	ene (1) and	Toluene (2) are give	n by:	(20)			
						•				
	$\log_{10} [P^{sat}] =$	A - $B/(t+C)$;	P is in torr	, t is in deg	g C.					
	(i) Propers of The studio group of 101.2 kpc and label the phase fields, but his and down									
	(i)Prepare a T-x-y diagram at 101.3 kPa and label the phase fields, bubble and dew									
	point lines. (ii) Prepare the corresponding (x-y) diagram. List the assumption that									
	you make. Comment on results.									
	Antoine constants are:									
			Α	В	C					
		Benzene(1)	6.87987	1196.76	219.161	-				
		Denzene(1)	0.07907	1120.70	£17,101					
		Toluene(2)	6.95087	1342.31	219.187	-				
		Toluene(2)	6.95087	1342.31	219.187					

3.	Explain the various data sources available for calculation of the thermodynamic properties of real gases such as Z, H and S. Describe the generalized correlations									(20)
	available for the calculation of Z, H and S giving relevant equations and graphs and									
4.	range of application. Test the thermodynamic consistency of the following data using the (i) differential (ii) integrated forms of Gibbs-Duhem equations									(20)
		x ₁	0	0.2	0.4	0.6	0.8	1.0]	
	γ ₁ γ ₂	0.576	0.655	0.748	0.856	0.950	1.000 0.379	-		
								-		
5A.	Benzene(1) –Cyclohexane(2) form an azeotrope at 0.525 mole fraction benzene at a temperature of 350.8K and 101.3kPa. At this temperature , the vapour pressure of benzene is 99.3 kPa and that of cyclohexane is 98 kPa. Using van Laar model estimate the activity coefficients at $x1=0.2$ and 0.9									(08)
5B.	Determine the equilibrium composition in case of the following simultaneous reactions. Feed contains : 2 mol A and 1 mol B. Temperature = 1500 K, Pressure = 10 bar. What is the assumption you make to solve the problem?. Show the details of the mathematical procedure used $A+B \rightarrow C+D \dots (1) K_1=2.67$								(12)	
	$A+C \rightarrow 2E \dots$ (2) $K_2=3.20$									
6A.	Derive the condition (criterion) for: (i) VLE in a multicomponent system (ii) Chemical reaction equilibrium. Give the relevant graphs also.									
6 B .	Derive a (i) How	-	on for the s					at a tempe		(10)
