

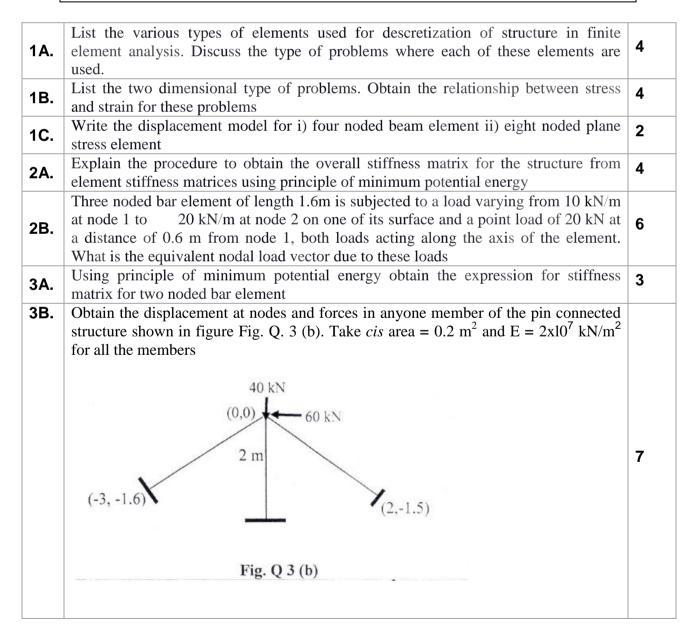
Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

I SEMESTER M.TECH (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: FINITE ELEMENT METHOD OD ANALYSIS-I [CIE-543]

REVISED CREDIT SYSTEM


Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

✤ Answer ANY FIVE FULL the questions.

• Missing data may be suitable assumed.

Reg. No.								
----------	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

IREDI	3Y LIFE			
4A	The displacement vector qT in local direction for two noded plane frame element of length 1.2m is $q^{T} = 1 \times 10^{-2}$ [0.1 0.16 0.06 0.132 -0.32 0.18]. Calculate the forces in local direction of the element if it carries a udl of 20 kN/m acting perpendicular to the element and a point load of 20 kN at 0.6 m from node I acting along the direction of element. Take EI= 150 kNm ² and AE= 2x 10 ⁴ kN	6		
4B	Obtain the shape functions for two noded beam element			
5A	 Six noded triangular element is subjected to a load varying from 10 kN/m at node 2 to 20 kN/m at node 3 acting along positive X- direction on the side 2-3 of length 1.2m and a point load of 100 kN acting down word direction at its centre of gravity. Calculate the equivalent nodal load vector due to these loads 	5		
5B	Explain the procedure to obtain stiffness matrix for three noded plane stress triangular element	5		
6A	Explain i) natural coordinate system for triangular elements ii) Hermetian interpolation functions	4		
6B	Explain the procedure to obtain stiffness matrix for eight noded quadrilateral element	6		