Reg. No.								
----------	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

FIRST SEMESTER M.TECH (STRUCTURAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: STRUCTURAL DYNAMICS [CIE - 545]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

1A.	For the system shown in Fig. Q1A formulate the equation of motion using D'Alembert's method	5			
1B.	 A one storey building is idealized as a rigid girder supported by weightless columns. In order to evaluate the dynamic properties of this structure a free vibration test is made, in which the roof system (rigid girder) is displaced laterally by a hydraulic jack and then released. During the jacking operation, it is observed that a force of 25 kN is required to displace the girder by 6 mm. After the instantaneous release of this initial displacement, the maximum displacement on the return swing is 4 mm and the period of this displacement cycle is 1.3 sec. Determine weight of the girder, natural frequency, damping constant, damping ratio, damped frequency, logarithmic decrement and amplitude after 4 cycles 				
2A.	Derive the expression for response for the free vibration of an over damped SDOF system with the following initial boundary conditions i) at $t = 0$ V = V _o and V = Vo ii) at $t = 0$ V = 75 mm and V = 9 mm/ sec				
2B.	A simple beam supports at its center a machine having a weight of 170 kN. The beam is made of two beams of clear span 4.6 m and each $I = 7 \times 10^7 \text{ mm}^4$. The motor runs at 380 rpm and its rotor is out of balance to the extent of 27 kg and at a radius of $e = 28 \text{ mm}$. What will be the amplitude of the steady state response if the equivalent viscous damping is assumed 15% of the critical?. $E = 220 \text{ kN/ mm}^2$	5			
3A.	Using simpson's rule for numerical evaluations of Duhamel's integral determine the dynamic response of SDOF system subjected to a blast loading shown in Fig. Q3A. The physical properties are W = 53.33 kN and K = 5000 kN/m. Take $\Delta \tau = 0.01$ sec	5			
3B.	A basic SDOF system with the following properties $W = 2700$ N and $K = 180$ kN/m is subjected to a half sine wave impulse of amplitude $P_0 = 2.3$ kN and duration $t_1 = 0.15$ sec. Determine (i) the maximum response and the time at which it occurs (ii) maximum spring force and (iii) response at $t = 0.2$ sec.	5			

	Reg. No.						
मज्ञानं ब्रह्म Manipal IRED BY	Manipal Institute of Technology, Manipal (A Constituent Institute of Manipal University)	WLEDGE IS P 7 11 C MANNAN N 11 C C MANNAN N 11 C C N 11 C C					
4A.	For the three storey shear building shown in Fig. Q4A, obtain the natural frequencies and the modes of vibration. Use classical method.						
4B.	Write a note on orthogonality relationship						
5A.	The two degrees of freedom system shown in Fig.Q5A is subjected to a single harmonic force $p_2 = 5 \sin \overline{\omega} t$. Its undamped vibration mode shapes and frequencies are shown below. Determine the study state response of each of the masses as a function of frequency at $t = 2$ seconds. Take $\overline{\omega} = 1.2 \omega$. Use mode super position method. $\Phi = \begin{pmatrix} 1 & 1 \\ 0.6 & -1.2 \end{pmatrix} \omega = \begin{cases} 13 \\ 28 \end{cases} rad/sec$	6					
5B.	Using the Hermitian polynomial as shape functions evaluate the consistence mass coefficient m_{23} for a beam (Fig. Q5B) having the following non-uniform mass distribution. $m(x) = m (1 + \overline{x}/L).$						
6A.	Treating the simply supported beam of uniform cross section as continuous systems obtain expression for frequency and vibration shape.						
6B.	Using modified Rayleigh's methods determine the fundamental frequency of the system shown in Fig. Q6B.						

