Reg. No.										
----------	--	--	--	--	--	--	--	--	--	--

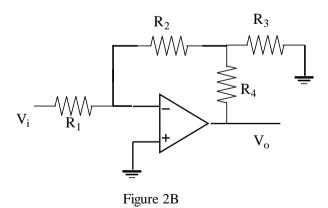
Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

I SEMESTER M.TECH (PESC)

END SEMESTER EXAMINATIONS, NOVEMBER 2015

SUBJECT: ANALOG AND DIGITAL SYSTEM DESIGN [ELE 509] REVISED CREDIT SYSTEM


Time: 3 Hours 26 November 2015 MAX. MARKS: 50

Instructions to Candidates:

- **❖** Answer **ANY FIVE FULL** questions.
- Missing data may be suitably assumed.
- ❖ DSP Quick reference table may be used.
- **1A.** Design and implement a Butterworth high pass filter with magnitude/frequency response of 3dB attenuation at a frequency of 2KHz and 15dB attenuation at a frequency of 1KHz.
- 04

06

- **1B.** Design and implement 4 bit flash ADC. Take V_{ref} =5V. If V_{in} is 2V find the value of b_1 , b_2 , b_3 and b_4 .
- **2A.** Determine the analog filter transfer function of low pass Chebyshev Type-I filter with the following specifications: A_P = -0.2dB; A_S =-18 dB; Ω_P =10,000 rad/sec; Ω_S =14,000 rad/sec.
- **2B.** Show that the circuit shown in Figure 2B has voltage gain A of the form $A = \frac{V_o}{V_i} = -K \frac{R_2}{R_1}.$

04

03

- **3A.** List various operators in VHDL and give their order of precedence.
- **3B.** Design and implement an analog square rooter with the help of analog multiplier.

02

Page 1 of 2

ELE 509

3C. Draw the state diagram of logic design shown in Figure 3C.

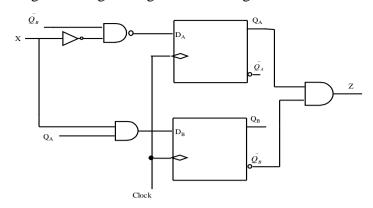


Figure Q3C

05

4A. Write VHDL code for a 4 bit universal type shift register to do the following operations.

S1	S0	Operations	
0	0	Hold	
0	1	Shift left by one bit	
1	0	Shift right by one bit	
1	1	Parallel load	

04

04

- **4B.** Write the VHDL code to generate the sequence 16-8-4-2-1-16-8-4-2-1..... at a frequency of 1 Hz. System clock frequency available is 4.4 MHz.
- **4C.** Translate the following code to a when...else statement.

process(a,b,j,k) begin if a='1' and b='0' then step<="0100"; elsif a='0' then step<=j; elsif b='1' then step<=k; else step<="0000"; end if;end process;

02

5A. Explain the structure of CLB in Xilinx Spartan IIE.

04

5B. Write a VHDL code for implementing 4:1 Mux using "with select" construct.

03

5C. Differentiate between signal assignment & variable assignment.

03

6A. With a block diagram explain the working of PLL. Hence design a frequency multiplier to generate frequency of 1 MHz from input frequency of 1 kHz.

06

6B. Evaluate the following expression and determine the resulting value.

W= "01010101", X="1001", Y="0110", Z="01010100";

(i) K=W or X & not Y xor Z rol 2

(ii) -7 mod -2

02

6C. List the merits and demerits of analog active filters compared to passive filters.

02

ELE 509 Page 2 of 2