DIN					
Keg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

FIRST SEMESTER M.TECH (DEAC & ME) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: ANALOG AND RF VLSI DESIGN [ECE - 503]

TIME: 3 HOURS Instructions to candidates

MAX. MARKS: 50

- Answer **ANY FIVE** full questions.
- Missing data may be suitably assumed.
- 1A. Define the following with respect to MOS devices: (i) transconductance (ii) ouput conductance (iii) intrinsic gain. Mention their units. Show that the transconductance of the MOSFET, operated in saturation, (i) increases with the overdrive potential for a given aspect ratio; (ii) decreases with the overdrive potential if I_{ds} is constant.
- 1B. Find the expression for resistance Z for the circuits shown in FIG. 1B.
- 1C. State Miller effect and its usefulness in circuit analysis.

(5+3+2)

- 2A. Explain the following layout techniques used for analog circuits: [i] interdigitization [ii] symmetry, [iii] common centroid geometry [iv] dummy strip
- 2B. Derive the expression for small-signal voltage gain and output conductance for the circuit shown in **FIG. 2B**.
- 2C. Explain the rationale behind half-circuit concept as applicable to differential amplifier.

(5+3+2)

- 3A. What do you understand by "cascode" topology ? Explain the telescopic PMOS double cascode amplifier with NMOS cascode load. State the merits of the circuit. Explain the concept of following: [i] simple folded cascode amplifier [ii] folded cascode amplifier with biasing.
- 3B. Calculate the small-signal voltage gain A_v for NMOS (M₁) CS stage with diode-connected PMOS load (M₂). Given that (W/L)₁ = 50/1, (W/L)₂ = 10/1, K_n = 50 μ A/V², μ _n = 2.5 μ _p and I_{ds1} = I_{ds2} = 0.5 mA. Assume $\lambda = 0$.
- 3C. Define the following MOS model parameters: [i] γ [ii] Early voltage V_A

(5+3+2)

- 4A. With a schematic circuit explain the working of an unbalanced CMOS OTA. Give the expression for dominant and non-dominant pole frequency. Bring out the differences between unbalanced and balanced OTA.
- 4B. Design a double cascode current mirror to sink a current of 10 μ A. Find the minimum voltage across the current sink and the output resistance. Given that $K_n = 50 \ \mu$ A /V², $V_{gs} = 1.2$ V, $V_{thn} = 0.83$ V, $V_{thp} = 0.91$ V, $\lambda = 0.06$ V⁻¹, $V_{DD} = 2.5$ V, $V_{SS} = -2.5$ V.
- 4C. Explain how the nonlinearity in CS stage is minimized using source degeneration.

(5+3+2)

- 5A. Discuss the frequency response of common source amplifier by considering high-frequency small signal analysis.
- 5B. Give the schematic circuit of NMOS common source amplifier with a current mirror active load. Assume all transistors have $W/L = 180 \ \mu m/1.8 \ \mu m$ and $K_n = 90 \ \mu A/V^2$, $K_p = 30 \ \mu A/V^2$, $I_b = 0.1 \ mA$, $\lambda_n = 0.06 \ V^{-1}$, $\lambda_p = 0.05 \ V^{-1}$. Find the voltage gain and output resistance.
- 5C. Obtain the expression for small-signal voltage gain for NMOS CG amplifier stage with diode connected PMOS active load for following cases: (i) $\lambda \neq 0$, $\gamma \neq 0$ (ii) $\lambda = 0$, $\gamma = 0$

$$(5+3+2)$$

- 6A. With a schematic circuit explain the working and use of Gilbert cell.
- 6B. For the NMOS differential pair $M_{1,2}$ with a current source load formed using $M_{3,4}$, $(W/L)_{1,2} = 15/5$, $(W/L)_{3,4} = 70/5$, $\lambda_n = 0.06 V^{-1}$, $\lambda_p = 0.05 V^{-1}$. Given that $\mu_n \approx 2.5 \mu_p$, $K_p = 20 uA/V^2$, $V_{DD} = -V_{SS} = 2.5 V$, $R_{bias} = 1.665 M\Omega$. Find the overall transconductance of the differential amplifier, differential and common-mode small-signal gain for $I_{bias} = 10 \mu A$.
- 6C. Discuss the Layout for resistor and capacitor.

$$(5+3+2)$$

