Reg. No.

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

FIRST SEMESTER M.TECH (DEAC) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: DETECTION AND ESTIMATION THEORY (ECE - 507)

TIME: 3 HOURS

MAX. MARKS: 50

Instructions to candidates

- Answer **ANY FIVE** full questions.
- Missing data may be suitably assumed.
- 1A. Consider a binary hypothesis testing problem with the following conditional density functions:

$$p_{R/H_0}(r/H_0) = e^{-r}, r \ge 0, p_{R/H_1}(r/H_1) = 2e^{-2r}, r \ge 0$$

If the two hypothesis are equally likely,

- i) Formulate an optimum decision rule assuming the cost for correct decision is zero and for a wrong decision is one.
- ii) Obtain the probability of error
- 1B. Consider the following conditional density functions in the context of a binary hypothesis testing problem

$$p_{R/H_1}(r/H_1) = \frac{1}{\sqrt{4\pi}} \exp\left(\frac{-(r-4)^2}{4}\right)$$
 and $p_{R/H_0}(r/H_0) = \frac{1}{\sqrt{2\pi}} \exp\left(\frac{-r^2}{2}\right)$

If the cost for a wrong decision is 1 and the cost for a correct decision is 0, determine the minimax criterion based detection threshold.

1C. Explain briefly the Neyman-Pearson criteria for hypothesis testing

(5+3+2)

- 2A. Consider *K* observations such that $R_k=m+N_k$, k=1, 2, 3, ...,K, where *m* is unknown and N_k 's are statistically independent zero mean Gaussian random variables with unknown variance σ^2 .
 - i) Find the estimates for *m* and σ^2 .
 - ii) Is the estimator of *m* an efficient estimator?
- 2B. Derive the Cramer-Rao bound for estimators of non-random parameters.
- 2C. Compare a MAP estimator with a M-L estimator

(5+3+2)

3A. Using the Gram-Schmidt orthogonalization procedure, obtain a generalized Fourier series expansion of the signals $s_1(t)$, $s_2(t)$, $s_3(t)$, and $s_4(t)$ shown in figure Q3A. Also, sketch the signal constellation.

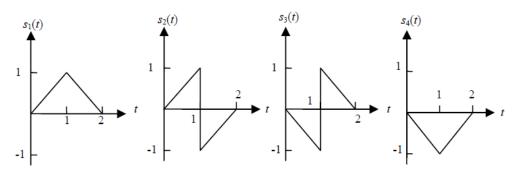


Figure Q3A

- 3B. Describe in detail the series expansion of a random process.
- 3C. Show that a wide sense stationary Gaussian random process can be expressed in a KLSE format using any arbitrary set of basis functions

(5+3+2)

4A. Consider a general binary detection problem as given below.

$$H_1: R(t) = s_1(t) + W(t)$$
 $0 < t < T$
 $H_0: R(t) = s_0(t) + W(t)$ $0 < t < T$

Here, $s_1(t)$ and $s_0(t)$ are known waveforms and W(t) is AWGN of two sided power spectral density $N_0/2$. Derive and optimum receiver for this problem and draw its block diagram

- 4B. Using the results of 4A above, arrive at expressions for the probability of error for coherent detection of Binary PSK, Binary ASK, and Binary FSK in AWGN
- 4C. Draw the schematic of a MAP estimator of the phase of a sinusoidal signal

(5+3+2)

5A. Let R_k be the observed random variable such that $R_k=a+bx_k+N_k, k=1,2,...K$

The constants x_k , k=1,2,...K, are known while the constants a and b are not known. If the random variables N_k are statistically independent and Gaussian distributed with mean zero variance σ^2 , obtain the *ML* estimate of (a, b).

- 5B. Let $s_1(t) = 1$ and $s_2(t) = t$ be defined on the interval [-1, 1]. Are $s_1(t)$ and $s_2(t)$ orthogonal in the given interval? Determine the constants α and β such that $s_3(t)=1+\alpha t+\beta t^2$ is orthogonal to both $s_1(t)$ and $s_2(t)$ in the interval [-1, 1].
- 5C. Show that: i) $E(\Lambda(\bar{r})/H_0) = 1$ ii) $E\left(\frac{1-\Lambda(\bar{r})}{\Lambda(\bar{r})}/H_1\right) = 0$

(5+3+2)

- 6A. What is the orthogonality principle in the context of minimum mean square error optimum filtering of a noisy signal? Derive this principle and with the help of this provide the frequency response of an optimum (non-causal) filter.
- 6B. Let R(t) = A(t) + N(t) in the interval 0 < t < T with N(t) being an additive noise process. Obtain an optimum filter for D(t) = dA(t)/dt if $K_{AA}(t) = e^{-2t}$ and $K_{NN}(t) = (N_0/2)\delta(t)$.
- 6C. In part 6B above, if you were to estimate the second derivative of A(t), what would be the filter frequency response. Generalize this result for n^{th} order differentiation of A(t)

(5+3+2)