Reg.	No.
Trope.	1100

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL 576104

(Constituent College of Manipal University)

FIRST SEMESTER M. Tech(S/W Engg.) DEGREE MAKEUP EXAMINATION, JAN-2016 SUBJECT: THEORETICAL FOUNDATIONS OF COMPUTER SCIENCE(ICT 521) (REVISED CREDIT SYSTEM)

TIME: 3 HOURS

03/01/2016

MAX. MARKS: 50

Instructions to candidates

- Answer any FIVE FULL questions.
- Missing data, if any, may be suitably assumed.

1A. Consider the following NPDA and answer the questions below.

PDA P=({q0,q1,q2,q3},{0,1},{X,Y,Z}, δ ,q0,Z,{q3}) has the rules defining δ :

$$\begin{array}{lll} \delta(q0,\epsilon,Z) = \{(q1,XZ)\} & \delta(q2,0,Y) = \{(q2,\epsilon)\} \\ \delta(q1,0,X) = \{(q1,YX)\} & \delta(q2,\epsilon,X) = \{(q2,\epsilon)\} \\ \delta(q1,0,Y) = \{(q1,YY)\} & \delta(q1,\epsilon,Z) = \{(q3,Z)\} \\ \delta(q1,1,Y) = \{(q2,Y)\} & \delta(q2,\epsilon,Z) = \{(q3,Z)\} \end{array}$$

- Give an execution trace (ID's) showing that string 0110 is accepted by P i)
- Give stack content after reading the string $0^3 1^5 0^3$ from the input. ii)
- 1B. Show that context free languages are not closed under intersection.
- 1C. With proper examples explain Chomsky hierarchy of languages.

[5+3+2]

- 2A. Formally describe a DPDA. Find a DPDA for L={wcw^r: w is a string of a's and b's}.
- 2B. Prove that Regular languages are closed under intersection using product construction.
- 2C. Explain Church's Turing thesis.

[5+3+2]

- 3A. State and prove pumping lemma for Context free languages.
- 3B. Convert following DFA to regular expression.

	0	1
q_1 q_2 $*q_3$	q_2	q_1
q_2	q_3	q_1
*43	q_3	$ q_2 $

3C. What are CNF and GNF normal forms? Explain.

[5+3+2]

- 4A. Find NFA's for the following languages over {0,1} alphabet.
 - The set of all strings such that containing 101 or 110 as substring i)
 - The set of all strings containing exactly 2 occurrences of 10. ii)
- 4B. Convert following CFG to Chomsky Normal Form.

$$S \rightarrow ABC - A \rightarrow BC|a - B \rightarrow bAC|\epsilon - C \rightarrow cAB|\epsilon$$

4C. Differentiate between recursive and recursively enumerable languages.

[5+3+2]

- 5A. Design a TM to convert a unary number to binary number.
- 5B. Discuss how the following can be simulated by standard TM and vice versa.
 - i) Multi tape TM
- ii) Nondeterministic TM
- 5C. Differentiate between NP-Hard and NP-complete problems.
- 6A. Give an example for a Language that is not recursively enumerable. Prove that it is not recursively enumerable.
- 6B. With a suitable example discuss Post correspondence problem.
- 6C. Prove that if L is recursive so is its complement $L\Box$.

[5+3+2]