Reg.No.					

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University, Manipal – 576 104

I SEM. MTech. (ADVANCED THERMAL POWER AND ENERGY SYSTEMS)

DEGREE END SEMESTER EXAMINATIONS NOV/DEC 2015

SUBJECT: RENEWABLE ENERGY TECHNOLOGY (MME-549)

REVISED CREDIT SYSTEM

Time: 3 Hours.

MAX.MARKS: 50

Instructions to Candidates:

✤ Answer ANY FIVE FULL questions.

Missing data, if any, may be suitably assumed

1A	Discuss briefly the driving forces of world energy supply and demand	04
1B	List the various renewable energy policy initiatives in India	03
1C	Calculate the total solar radiation incident on a south facing surface inclined at 30 [°] to horizontal at a latitude of 40 [°] N at 3 pm on May I st . Reflectivity of the ground is 0.6 Altitude angle : $\beta = \sin^{-1} (\cos l . \cos h . \cos d + \sin l . \sin d)$	03
	Incident angle: $\cos^{-1}(\sin\beta\cos\Sigma + \cos\beta\cos\alpha\sin\Sigma)$	
2A	Using thermal network for a two cover flat plate solar collector, obtain	05
2B	Determine the overall heat transfer coefficient for a flat plate collector system inclined at 30° to horizontal and facing south. The absorber plate temperature is 75° C and glass cover temperature is 50° C. The system is provided with 8 mm thick insulation (K = 0.04 W/m ^o C) at the bottom. The air space between the absorber plate and glass cover is 8 cm thick and the emissivity of glass and plate is 0.88 and 0.95. The Nusselt number may be taken as 5.6. The ambient temperature is 22° C.	05
3A	Define the term collector heat removal factor. What is its significance in the performance of collector. Obtain an expression for it in terms of dimensionless collector capacitance.	05
3B	Calculate the heat removal factor for a collector having an over all heat transfer coefficient of $6 \text{ W/m}^2 \text{ K}$ and constructed of aluminium fins and tubes (K= 204 W/m K). Tube-to-Tube centre distance is 15 cm, fin thickness is 0.05 cm, tube diameter is 1.2 cm, Fluid-tube heat transfer coefficient is 1200 W/m ² K. The cover transmittance to solar radiation is 0.9 and is independent of direction. The solar absorptance of absorber E 549)	05
(101101)		-

plate is 0.9, the collector is 1 m wide and 3 m long and the water flow rate is 0.02 kg/s. Water temperature is 57° C.

- **4A** Critically evaluate the merits and demerits of different types of **05** concentrating collectors.
- 4B Calculate the loss coefficient for a 70-mm cylindrical receiver at 300°C. The absorber surface has an emittance of 0.29. The absorber is covered by a glass tubular cover 90mm in outer diameter and 4mm thick. The space between the absorber and cover is evacuated. The wind speed is 6 m/s and the sky and air temperatures are 4 and 12°C, respectively. At an average of cover and ambient temperature, the properties of air are

K = 0.031W / mK, $\upsilon = 23.52 \times 10^{-6} m^2 / s$, $P_r = 0.7$, $\rho = 1.23 kg / m^3$

- **5A** List the different storage media used for solar energy storage. Compare **05** their relative merits and demerits.
- 5B Explain the working principle of evacuated tube heat pipe solar collector. Mention its advantages and disadvantages over other types of collectors
- **6A** What are the different forms of biomass available as biofuels. Explain **05** the factors which affect performance of the biogas digester.
- 6B What are the main considerations for selecting a site for wind turbine installation. Explain the Betz model of expanding air. Using this model obtain the maximum power that can be extracted from wind.05