Reg. No.			

MANIPAL UNIVERSITY

FIRST SEMESTER MSc. INFORMATION SCIENCE DEGREE EXAMINATION – NOVEMBER 2015

SUBJECT: MIS 503 - DATABASE MANAGEMENT SYSTEMS

Wednesday, November 25, 2015

Time: 10:00 - 13:00 Hrs.

Max. Marks: 100

1. Explain three level architecture of Database Management Systems.

(10 marks)

- 2. Define the terms:
- 2A. Data redundancy
- 2B. Databases
- 2C. Data Model
- 2D. Data Isolation

 $(2\frac{1}{2} \text{ marks} \times 4 = 10 \text{ marks})$

Assume the university computing services (UCS) administers all campus computer networks. Each computer in a network is uniquely identified by an inventory number, and also has a name (e.g., ise.gmu.edu) and a model (e.g., Dell Laptop). Computers are connected via networks. Each network has an identification number (id) and a capacity. Each computer is connected to a single network. The number of computers that are connected to a network may not exceed the capacity of the network. Each computer can have several peripheral devices. Each peripheral is installed in a specific io-port (e.g., USB slot #1); io-port numbers are unique within the computer, and has device name for the device currently associated with it (e.g, external disk drive). Users are identified by a social security number, and also have a name. Users can access the computers assigned to them; users are guaranteed access to at least one computer. For each computer that a user may access, the user is assigned a user-id and a password. Construct a clean and concise ER diagram. List your assumptions and clearly indicate the cardinality mappings as well as any role indicators in your ER diagram.

(10 marks)

- 4. Write the steps with relevant example to map ER diagram into Relational Model:
- 4A. Multi value attribute
- 4B. Weak entity
- 4C. Composite attribute
- 4D. Derived attribute

 $(2\frac{1}{2} \text{ marks} \times 4 = 10 \text{ marks})$

Discuss five aggregation functions in relational algebra with an example.

(10 marks)

Page 1 of 2

6. Use the below relation schema write relational algebra query:

Book(b_id, title, author, category, year, location)

Student(s_id, name, major, gender)

Borrow(s_id, b_id, date)

Library(name, address)

/*location refers to Library.name*/

/*s_id refers to Student.s_id and b_id refers to Book.b_id */

- 6A. List out the students' names of whose major is 'Computer Science'.
- 6B. Output the names of students who have borrowed at least one book within this year. (This year begins at '01/01/2015'.)
- 6C. Output the majors of students who have borrowed 'Database System'.
- 6D. Output the majors in which none of the students have borrowed any book in the category 'Computer Science'

 $(2\frac{1}{2} \text{ marks} \times 4 = 10 \text{ marks})$

7. Define Sub queries. List out the advantage and drawbacks of using sub queries. Explain subqueries using EXISTS and IN.

(2+2+6 = 10 marks)

8. Write short notes on Triggers and Views.

(10 marks)

- Account (account-number, branch-name, balance)
 Increase all accounts with balances over 10,000 by 6%, all other accounts receive 5%.
- 9A. Write two sql update statements.
- 9B. Write query using sql case statement.

 $(5 \text{ marks} \times 2 = 10 \text{ marks})$

10. Compare 3 NF with BCNF.

(10 marks)