| Reg. No. |  |  |  |  |  |  |  |  |  |
|----------|--|--|--|--|--|--|--|--|--|
|----------|--|--|--|--|--|--|--|--|--|



Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)



## V SEMESTER B.TECH (BIOTECHNOLOGY)

## END SEMESTER EXAMINATIONS, NOV/DEC 2015

## SUBJECT: CHEMICAL AND BIOCHEMICAL ENGINEERING THERMODYNAMICS [BIO 301] REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

## Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

| 1A. | Air at 1 bar and 298.15 K is compressed to 5 bar and 298.15K by a mechanically reversible process: heating at constant volume followed by cooling at constant pressure. Calculate the heat and work requirements and $\Delta U$ and $\Delta H$ of air. The following heat capacities for air may be assumed independent of temperature. Cv = 20.78 J/mol K and Cp = 29.10 J/mol K. Also assume PV/T is a constant regardless of the changes it undergoes. At 298.15 K and 1 bar the molar volume of air is 0.02479 m <sup>3</sup> /mol                                                                                                                                                                                                                                                 | 5 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 1B. | <ul> <li>Nitrogen gas is confined in a cylinder and the pressure of the gas is maintained by a weight placed on the piston. The mass of the piston and the weight together is 50 kg. The acceleration due to gravity is 9.81 m/s<sup>2</sup> and the atmospheric pressure is 1.01325 bar. Assume frictionless piston. Determine: <ul> <li>(i) The force exerted by the atmosphere, the piston, and the weight on the gas if the piston is 100 mm in diameter.</li> <li>(ii) The pressure of the gas.</li> <li>(iii) If the gas is allowed to expand pushing up the piston and the weight by 400 mm, What is the work done by the gas in kJ.</li> </ul> </li> <li>What is the change in the potential energy of the piston and the weight after the expansion in part (iii)?</li> </ul> | 5 |
| 2A. | Calculate the absolute entropy of water vapour at 473 K and 101.3 kPa above 273 K base temperature. Compare this with the value reported in the steam tables (S = $7.829 \text{ kJ/kg K}$ ). The average heat capacity of water is $4.2 \text{ kJ/kg K}$ and that of water vapour between 373 K and 473 K is $1.9 \text{ kJ/kg K}$ . The latent heat of vaporization at 373 K is 2257 kJ/kg.                                                                                                                                                                                                                                                                                                                                                                                           | 5 |
| 2B. | The potential energy of a body of mass 10 kg is 1.5 kJ. What is the height of the body from the ground? If a body of 10 kg is moving at a velocity of 50 m/s, what is its kinetic energy?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3 |
| 2C. | A tank comprising a fluid is stirred by a paddle driven by 2 HP motor. Heat losses from the tank are 378 Kcal/hr. Does the internal energy of the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2 |

|     | comprising of 10 kg of the fluid in the tank, increase or decrease? By how much?                                                                                                                                                                                                                                                                                                                                        |   |  |  |  |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|--|--|
| 3A. | An ideal gas is undergoing a series of three operations: The gas is heated at constant volume from 300 K and 1 bar to a pressure of 2 bar. It is expanded in a reversible adiabatic process of 1 bar. It is cooled at constant pressure of 1 bar to 300 K. Determine the heat and work effects for each step. Assume CP = 29.3 kJ/kmol K.                                                                               |   |  |  |  |
| 3B. | A 800MW thermal power plant uses steam at 600K and discards heat to a river<br>at 295K. Determine the heat discarded to the river if the thermal efficiency of<br>the plant is 70% of the maximum possible value                                                                                                                                                                                                        |   |  |  |  |
| 3C. | Show that any device that violates the Kelvin–Planck statement also violates the Clausius statement.                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
| 4A. | For a homogeneous phase, derive Gibbs/Duhem equation                                                                                                                                                                                                                                                                                                                                                                    |   |  |  |  |
| 4B. | What is the change in entropy when $0.7 \text{ m}^3$ of CO <sub>2</sub> and $0.3 \text{ m}^3$ of N <sub>2</sub> each at 1 bar and 25°C blend to form a gas mixture at the same condition? Assume ideal gases.                                                                                                                                                                                                           |   |  |  |  |
| 4C. | What is activity and activity coefficient?                                                                                                                                                                                                                                                                                                                                                                              |   |  |  |  |
| 5A. | The gas phase oxidation of SO2 to SO3 is carried out at a pressure of 1 bar<br>and temperature of 855 K with 20% excess air in an adiabatic reactor.<br>Determine the equilibrium composition.<br>Data:Data: $\Delta H_{298}^o = -98890 J$<br>$\Delta G_{298}^o = -70866 J$                                                                                                                                             |   |  |  |  |
| 5B. | n-Butane is isomerised to i-butane by the action of catalyst at moderate<br>temperatures. It is found that the equilibrium is attained at the following<br>compositionsTemperature, KMol%, n-butane31731.0039143.00Assuming that activities are equal to the mole fractions, calculate standard free<br>energy of the reaction at 317 K and 391 K and average value of heat of reaction<br>over this temperature range. | 4 |  |  |  |
| 6A. | Calculate standard heat of reaction and free energy change at 37°C for the following reaction, if the equilibrium constant is 5.3 fold higher than standard state equilibrium constant<br>$ATP + H_2O \rightleftharpoons ADP + P_i + H^+$ ( $\Delta G^\circ = -30.5 \text{ kJ/mol}$ )                                                                                                                                   |   |  |  |  |
| 6B. | Discuss the thermodynamic equilibrium with chemical potential and free energy changes for an osmosis process.                                                                                                                                                                                                                                                                                                           | 3 |  |  |  |
|     | Living things are highly ordered, low entropy, structures. Is the second law of thermodynamics violated in the living cells? Explain?                                                                                                                                                                                                                                                                                   |   |  |  |  |