

(A Constituent Institute of Manipal University)

3

3

V SEMESTER B.TECH (B. E. BIOTECHNOLOGY) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: DOWNSTREAM PROCESSING TECHNOLOGY [BIO 305]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

A continuous stirred tank adsorption process is carried out to separate modified vancomycin from the bacterial culture. Using a graphical
1A. representation, explain the adsorption process in a stirred tank for rapid adsorption, no adsorption and ideal adsorption.

For a continuous stirred tank, derive the following equation:

1B.

1D.

 $q(t) = q(0) + \frac{Hy_F t}{(1-\varepsilon)V} - \frac{H}{(1-\varepsilon)V} \int_0^{\varepsilon} y dt - \left(\frac{\varepsilon}{1-\varepsilon}\right) y(t)$

Where: V-volume of the tank

y and y_F are the solute concentrations in the effluent and the feed

H is the feed rate and q is the adsorbed solute concentration (at time 0 and t)

Leaching process is utilized for extraction of a soluble constituent from a solid by means of a solvent. However, there are certain stages involved in the

1C. By means of a solvent. However, there are certain stages involved in the leaching process. Illustrate the steps involved in leaching with the help of a sketch, describing the major rate limiting factors involved in the process. An adsorption column has the capacity to adsorb 7.6 × 10 ⁻⁶ mol/cm³ of a genetically modified protein. The adsorption isotherm follows the following equation:

$$q = \frac{q_m y}{K+y}$$
; Where K is 2.3 × 10⁻⁵ mol/liter. 2

If the operation is to be managed such that 90%, of the column capacity will be exhausted for a 0.085 liter column, what would the feed concentration be, for 2 liters of the feed solution?

2A. Derive the equations for yield and purity for a chromatography process operating from time 0 to t.

Reg. No.									
----------	--	--	--	--	--	--	--	--	--

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

	Note: $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-x^2) dx$; $\int_{a}^{b} \exp(-x^2) dx = \frac{\sqrt{\pi}}{2} \left[\operatorname{erf}(b) - \operatorname{erf}(a) \right]$	
	$erf(-x) = -erf(x); erf(0) = 0; erf(\infty) = 1; erf(x > 2.5) = 1 erf(\frac{-1}{\sqrt{2}\sigma}) = -1$	
2B.	An insulin purification plant is set up which uses polyacrylamide beads. The data obtained by the process is such that the maximum concentration (0.021mg/ml) is observed at 185 liter. At 165 liters, the concentration observed is 0.012 mg/ml. If the bed volume is 18 liters, determine the values for yield at 185 and 200 liters.	3
2C.	Three proteins, having distribution coefficients as 0, 2 and 6, are being separated by affinity chromatography using a 9 cm long column having 200 theoretical plates. The voidage of the column is 0.46 and t_m is 9 minutes. Using this data, determine the t_R for each protein.	3
2D.	Compare and contrast the techniques of ion exchange chromatography and size exclusion chromatography.	2
3A.	An aqueous solution containing albumin is maintained at 25° C such that the protein in the solution has a charge of +12, and the axial diffusion coefficient of 8.5×10^{-7} cm ² /sec. What is the velocity due to a force of 2.5 volt/cm? The same solution also contains an unknown protein, having the axial diffusion coefficient of 7.6×10^{-7} cm ² /sec. Determine the location and the resolution of the peaks if the following set of conditions are followed for 2 hours: The electric filed strength is set at 130 v/cm for separation and the values of mobility of the proteins is 1×10^{-5} cm ² /volt sec and 0.8×10^{-5} cm ² /volt sec, under the applied electric filed.	5
3B.	Note: F = 96500C/mol, R=8.315 J/mol. K and u _{osm} = 0 Design a technique for the separation of two proteins that differ in their subunit molecular weights. If the subunits had to be purified further by utilizing their mobility in a pH gradient medium, how would the process be upgraded?	3
3C.	Illustrate the principle of adsorption used in the separation of tagged proteins	2

in the process of column chromatography, during the polishing stages.

Derive the equation for the crystal growth.

4A.
$$\frac{dm}{dt} = K_G \ (\Delta c)$$
; where m is the mass deposited in time t **3**

Design a separation process which will be most suitable for extraction of a 3 highly temperature sensitive protein product from an aqueous mixture, using 4B. the liquid membrane technique.

Sketch and compare the advantages that different types of stirred 2 4C. crystallizers have over batch crystallizers.

(A Constituent Institute of Manipal University)

3

3

4

1000 kg of a 30% protein solution is cooled to 30° C. During cooling, 10% of water originally present evaporates. The crystals obtained are consisting of bound moisture. The solubility of aphydrous protein at 30° C is 21 5kg/100 kg.

- 4D. bound moisture. The solubility of anhydrous protein at 30^oC is 21.5kg/100 kg water. What weight of protein crystallizes out? (Molecular weight of protein with bound water: 286 and anhydrous protein: 106)
- 5A. Propose the technique that can be applied to overcome the feedback inhibition caused by a biocatalyst during biotransformation process.
 A batch of fine particulate wet solids containing initial moisture content of 40% moisture is dried continuously in a tower drier to 20% of moisture. The drying process is assisted by a counter-current flow of air at 375K. The
- 5B. critical moisture content is at 15% and the constant rate of drying is 0.7 g/s m². For using such a process, calculate the approximate drying time, if the drying surface is assumed to be 0.03 m²/kg dry mass for 100kg feed of wet solids.

Derive the equation for denaturation during drying and solve the following problem: Drying operation is utilized during the final processing stages of protein crystals. At 40^oC, drying operation for 10 min causes 60%

5C. denaturation. When dried at 30°C for 30 min, protein denatures by only 25%. Estimate the denaturation for 80 min at 2°C.

Note: $K=3.5\times10^{15} \text{ min}^{-1}$; E=23.4×10³ cal/gmol; R= 1.99 cal/mol. K

At the end of a fermentation process, the broth containing 20g/l of solute of interest is sent into a continuous mixer settler extraction system at the flow rate of 100L/min. The extracting solvent enters at the rate of 10 L/min. The equilibrium line for this process is given as: $C_E=40C_R$. For the first stage, calculate the (a) solute concentration in the extract and raffinate (b) fraction

of solute extracted. As the organic extract enters into the second stage at 5 L/min and a varied set of pH conditions, the equilibrium line changes form to: $C_E=37C_R$. For the second stage, calculate (c) Concentration of solute in extract and raffinate from second extraction (d) Overall fraction of solute extracted.

Illustrate and design a drying operation for a wet slurry that has to be converted to dry granular end product by mixing with a friable mass of previously dried mixture.

6B.

6A.

2

2

Proteins are extracted from cheese whey using the aqueous two phase extraction system. For the salt concentration of 0.5M and 1 M the protein

6C. partitions into the two phases as follows: Determine the % yield for the two salt concentrations.

	Reg. No.											
--	----------	--	--	--	--	--	--	--	--	--	--	--

(A Constituent Institute of Manipal University)

A
KNOWLEDGE IS POWER
EVTOA
MMM
FILME
IST OF
TUTE OF
THE OF

2

Salt conc. (M)	Volume		Concentration			
	Тор	Bottom	Тор	Bottom		
	phase	phase	phase	phase		
0.5	2.4	2.88	1.2	6.05		
1	1.8	2.5	0.79	6.6		

The membrane chromatography process is utilized to purify DNA (diffusivity= 9.5 $\times 10^{-12}$ m²/s) from a DNA protein mixture. If the dimensions of the

membrane are as follows: Thickness-3mm, area of membrane-1.89 $\times 10^{-3}$ m², 6D. Porosity- 0.65 and tortuosity-1.5 and pore diameter-2×10⁻⁶ m. Determine the diffusion time and convection time for this membrane operating at a flow rate of 1m³/sec.