

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

V SEMESTER B.TECH (BIOTECHNOLOGY)

END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: FERMENTATION ENGINEERING [BIO 303]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

1A.	Assume that your responsibility is to formulate a media for a high-value protein using recombinant DNA technology. Your senior colleague insists you to add inducers, inhibitors and precursors to the media. What could be the reason? Justify the addition of these compounds with one example each:	5
1B.	 You are provided with a heat exchanger consisting of 10 m length of pipe, with internal diameter of 0.074 m. Steam is available at 135°C, and you need to ensure sterility of 2,000 L medium in 1 h. Past experience has shown that the complex medium contains 5 x 10⁶ spores/mL. The activation energy of spore destruction and frequency factor are 80,000 cal/mole and 2.5 x 10⁴⁴ min⁻¹ respectively. At the temperature of sterilization, you may assume that the medium has the same density and viscosity as water (ρ = 927 kg/m³; μ = 0.21 x 10⁻³ kg/m.s). i. Calculate the number of spores surviving after sterilization, and the probability of contamination. ii. For the problem above, what would be the impact of operating the sterilizer with a lower value of Peclet number? 	2.5 + 2.5
2A.	Filtration method can be used as a sterilization technique. Justify this statement with two examples:	2.5+2.5
2B.	A continuous steriliser is constructed using a 21 m length of pipe of internal diameter 8 cm. Liquid medium in the pipe is maintained at 128°C using saturated steam. At this temperature, the specific death constant of the contaminating organisms is 340 h ⁻¹ and the density and viscosity of the medium are 1000 kg/m ³ and 0.9 cP, respectively. The concentration of contaminants in the raw medium is 6.5×10^5 m ⁻¹ . If sterile medium is required on the fermentation floor at a rate of 0.9 m^3 / h, what is the frequency of contamination in the fermentation factory?	5
3A.	i. Assume that the concentration of a limiting substrate inside a spherical biocatalyst falls to zero inside the particle for a zero order reaction. Under this condition, what happens to the effectiveness factor?ii. How do you maintain the concentration of limiting substrate greater than zero inside the particle?	2.5+2.5
3B.	Invertase enzyme is immobilized in the form of spherical beads. The reaction follows a first order kinetics with a reaction rate constant of 3.6 h ⁻¹ . The size of the beads is 12 mm and the effective diffusivity of substrate is $1 \times 10^{-6} \text{ m}^2/\text{sec.}$	2.5+2.5

answer: ii. Now instead of immobilized beads, you are asked to try with rectangular shaped strips of immobilized invertase enzyme. The volume of each strip $1 \times 10^{-9} \text{ m}^3$ and its surface area is $6 \times 10^{-6} \text{ m}^2$. Will this new condition affect the availability of the substrate inside the enzyme? Discuss: An enzyme (K _M = 1M) is immobilized uniformly in a gelatin slab (thickness L.	
11. Now instead of immobilized beads, you are asked to try with rectangular shaped strips of immobilized invertase enzyme. The volume of each strip 1×10^{-9} m ³ and its surface area is 6×10^{-6} m ² . Will this new condition affect the availability of the substrate inside the enzyme? Discuss: An enzyme (K _M = 1M) is immobilized uniformly in a gelatin slab (thickness L.	
snaped strips of immobilized invertase enzyme. The volume of each strip $1 \ge 10^{-9} \text{ m}^3$ and its surface area is $6 \ge 10^{-6} \text{ m}^2$. Will this new condition affect the availability of the substrate inside the enzyme? Discuss: An enzyme (K _M = 1M) is immobilized uniformly in a gelatin slab (thickness L)	
affect the availability of the substrate inside the enzyme? Discuss: An enzyme ($K_M = 1M$) is immobilized uniformly in a gelatin slab (thickness L)	18
An enzyme ($K_M = 1M$) is immobilized uniformly in a gelatin slab (thickness L)	
I = I = I = I = I = I = I = I = I = I =	nd
area A) One side is in contact with a substrate solution (10 M) and the other side	
in contact with a glass plate. Derive the equation for the substrate concentra	ion =
4A. with respect to the distance inside the slab. Assume that the substrate is transfer	ed 5
by molecular diffusion in the x direction only and the gelatin slab is thick eno	igh
to catalyze all the substrate while it diffuses into the slab.	
The bioconversion of glucose to ethanol is carried out in a packed-b	ed,
immobilized-cell bioreactor containing yeast cells entrapped in calcium algir	ate
beads. The rate-limiting substrate is glucose and its concentration in the feed b	ulk _
4B liquid phase is 5 g/L. The particle size of beads is 0.5 cm. The rate expression	for 5
this bioconversion is given by, $r_s = (r_m S) / (K_s + S)$, where $r_m = 100 \text{ mg/cm}^3 \text{ h}$	ind
$K_s = 10 \text{ mg} / \text{cm}^3$. The effective diffusivity of glucose inside the bead is 10 ° cm	/s.
Determine the effectiveness factor and comment on the results:	
A 20 L suffed termenter containing <i>Baculus inventigiensis</i> is used to produce insecticide. The ovvgen balance method is applied to determine $k_{x,y}$. The ferme	an
α operating pressure is 150 kPa and the culture temperature is 30°C. The oxy	ten
tension in the broth is measured as 82% using a probe calibrated to 100% in	situ
using water and air at 30°C and 150 kPa. The solubility of oxygen in the cul-	
5A. fluid is the same as in water. Air is sparged into the vessel: the inlet gas flow	ate $2.3+2.3$
measured outside the fermenter at 1 atm pressure and 22°C is 0.23 L/s. The exit	zas
from the fermenter contains 20.1% oxygen and has a flow rate of 8.9 L/min.	-
i. Calculate the volumetric rate of oxygen uptake by the culture.	
ii. What is the value of $k_L a$?	
The dynamic pressure method is applied for measurement of k_La in a 3000	L
stirred fermenter containing a suspension culture of Micrococcus glutamicus.	he
stirrer is operated at 60 rpm and the gas flow rate is fixed at 800 L/min.	he
following dissolved oxygen concentrations are measured using a polarograp	hic
5R	5
5b. Time (s) $6 \ 10 \ 25 \ 40$	
C _{AL}	
(% air saturation) 50.0 56.1 63.0 64.7	
(% air saturation)50.056.163.064.7The steady-statedissolved oxygen tension at the end of the dynamic response	is
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response66% air saturation. Estimate the value of kLa.	is
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6ADevelop a model for a filamentous organism which form microbial pellet at h	is igh 5
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at h cell densities in suspension cultures.	is igh 5
(% air saturation) 50.0 56.1 63.0 64.7 The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa. 66% air saturation. Estimate the value of kLa. 6A. Develop a model for a filamentous organism which form microbial pellet at h cell densities in suspension cultures. Consider the growth of a microorganism in batch culture, inoculated at	is igh 5 a
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at h cell densities in suspension cultures.Consider the growth of a microorganism in batch culture, inoculated at concentration of 0.1 g/L, growing on fructose as the limiting substrate with	is igh 5 a an
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at h cell densities in suspension cultures.Consider the growth of a microorganism in batch culture, inoculated at concentration of 0.1 g/L, growing on fructose as the limiting substrate with initial concentration of 10 g/L. After a lag time of 3 h, the culture growth	is igh 5 a an ws
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at h cell densities in suspension cultures.6A.Consider the growth of a microorganism in batch culture, inoculated at concentration of 0.1 g/L, growing on fructose as the limiting substrate with initial concentration of 10 g/L. After a lag time of 3 h, the culture gro exponentially with a doubling time of 2 h. Stationary phase is reached after a term	is igh 5 a an ws tal
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at 1 cell densities in suspension cultures.6A.Develop a model for a filamentous organism in batch culture, inoculated at concentration of 0.1 g/L, growing on fructose as the limiting substrate with initial concentration of 10 g/L. After a lag time of 3 h, the culture gro exponentially with a doubling time of 2 h. Stationary phase is reached after a to time of 14 h. Assume that there was no decline phase.	is igh 5 a an ws tal 1+2+2
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at h cell densities in suspension cultures.6A.Develop a model for a filamentous organism in batch culture, inoculated at concentration of 0.1 g/L, growing on fructose as the limiting substrate with initial concentration of 10 g/L. After a lag time of 3 h, the culture gro exponentially with a doubling time of 2 h. Stationary phase is reached after a to time of 14 h. Assume that there was no decline phase.6Bi.Determine μmax.iiDetermine μmax.	is igh 5 a an ws tal 1+2+2
(% air saturation)50.056.163.064.7The steady-state dissolved oxygen tension at the end of the dynamic response 66% air saturation. Estimate the value of kLa.6A.Develop a model for a filamentous organism which form microbial pellet at 1 cell densities in suspension cultures.6A.Develop a model for a filamentous organism in batch culture, inoculated at concentration of 0.1 g/L, growing on fructose as the limiting substrate with initial concentration of 10 g/L. After a lag time of 3 h, the culture gro exponentially with a doubling time of 2 h. Stationary phase is reached after a to time of 14 h. Assume that there was no decline phase.6Bi.Determine μmax.ii.Determine μmax.iii.Determine Yxsiii.The total time of culture to reach stationary phase if the initial substrate	is igh 5 a an ws tal 1+2+2 ate
	is igh 5 a an ws ttal 1+2+2 ate lso