Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

V SEMESTER B.TECH (CHEMICAL ENGINEERING)

MAKE UP EXAMINATION, January 2016

SUBJECT: CHEMICAL REACTION ENGINEERING [CHE-307]

REVISED CREDIT SYSTEM

Time: 3 Hours

Max. Marks: 100

Instructions to Candidates:

- Answer ANY 5 FULL questions.
- Missing data may be suitable assumed and indicated properly

1A.	Distinguish: Extensive and Intensive chemical reaction rates. Explain the various ways of defining these rates.											(06)	
1B.	Explain the differential and integral methods of analysis of kinetic data?. Explain these methods taking a uni-molecular n^{th} order reaction $A \rightarrow$ products as the example.										(10)		
1C.	What is "half-life"? Explain the half method of kinetic analysis with graph and equation.										(04)		
2.	We are planning to operate a mixed flow reactor to convert A into R in the liquid phase by the reaction $A \rightarrow R$. The rate vs concentration data is given below. (i)What size of mixed flow reactor is required to achieve 75% conversion of a feed stream of 1000 moles of A/hr with $C_{A0}=1.2 \text{ mol}/\text{lit}$? (ii) repeat part (i)with a feed rate of 2000 molA/hr. with $C_{A0}=1.2 \text{ mol}/\text{lit}$ (iii) repeat part (i) with a feed rate of 1000 molA/hr with $C_{A0}=2.4 \text{ mol}/\text{lit}$ to be treated down to final concentration of $C_{Af}=0.3 \text{ mol}/\text{lit}$										liquid (i)What stream of e of 2000 nolA/hr nol/lit	(20)	
	C _A (mol/lit)	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	1.0	1.3	2.0	
	(-r _A) (mol/litmin)	0.1	0.3	0.5	0.6	0.5	0.25	0.1	0.06	0.05	0.045	0.042	

3A.	The saponification reaction NaOH(aq) +CH3COOC2H5 \rightarrow CH3COONa+C2H5OH follows second order kinetics. A laboratory batch reactor is charged with an aqueous solution containing NaOH and ethyl acetate, both at an initial concentration of 0.1 mol/lit.18% conversion of ethyl acetate is obtained in 15 minutes. For the initial charge containing NaOH and ethyl acetate in equal concentration of 0.2 mol/lit, find the time required to achieve a conversion of 30% in a commercial batch reactor.	(10)
3B.	A first order gas phase reaction $A \rightarrow 3R$, is first studied in a constant-pressure batch reactor. At a pressure of 2 atm and starting with pure A, the volume increases by 75% in 15 min. Find the rate constant of the reaction.	(10)
4.	The homogeneous gas phase reaction $A \rightarrow 3R$ follows second order kinetics. For a feed rate of 4 m3/hr of pure A at 5 atm and 350 deg C, an experimental reactor consisting of a 2.5 cm ID, 2meter long pipe gives 60% conversion of feed. A commercial plant is to treat 320 m3/hr of feed containing 50% of A and 50% inerts at 25 atm and 350 deg C to obtain 80 % conversion.(i) How many 2 meter long and 2.5 cm ID pipes are required?(ii):Should they be placed in series or parallel? Assume: Plug flow in the pipe, negligible pressure drop and ideal gas behavior.	(20)
5A.	 Considering a first order liquid phase reaction: A→ R, prove the following: (i) the sequencing of 2 CSTRS; a small volume CSTR (V₁) and a larger volume (V₂) CSTR does not matter and the final conversion will be the same, when they are connected in series for the above reaction. (ii) the sequencing of 2 reactors ; a PFR and a CSTR does not matter and the final conversion will be the same, when they are connected in series for the above reaction. 	(12)
5B.	Show that the CSTR cascade consisting of N number of equal size tanks gives the same performance (same final conversion/concentration) of that of a PFR for the same volume and same initial conditions of C_{AO} , v_0 , F_{AO} .	(08)
6A.	Consider the elementary consecutive reactions: $A \rightarrow B \rightarrow C$ with unequal rate constants for both the steps is conducted in a PFR. Derive expressions for T_{max} and $C_{B max}$. Show the variation of concentration of A, B and C with respect to time in a graph in cases of equal rate constants for both the reaction steps, $k1=k2$	(12)
6B.	Suggest the various possible contacting patterns (including both batch & continuous systems) for the following parallel reactions for maximizing selectivity of the desired product D against the undesired product U. List the assumptions. $A + 2B \rightarrow D$ (i) $2A + B \rightarrow U$ (ii)	(08)