
Registration	Number:
--------------	----------------

MANIPAL UNIVERSITY

Vth Semester B.Tech (Chemical Engineering)

END SEMESTER EXAMINATION – NOV/DEC 2015

SUBJECT: Computational Methods for Chemical Engineers (CHE 311)

Time: 3 hrs Max. Marks: 100

! Instructions to students

- 1. Answer any FIVE FULL questions.
- 2. Make suitable Assumption if required
- 3. Answer should be correct to three places of decimal

1	A							4		
1	В	Determine the temperature distribution on the surface of a 4×4 cm ² rectangular slab under 8						8		
		steady state as shown in figure. $T(x,0)=250$ K, $T(0,y)=280$ K, $T(4,y)=275$ K and								
		T(x,4)=300 K.Ta	$ke \Delta x = 1c$	m and $\Delta y =$	1 cm					
		, ,		,						
1	C	Use Multivarial	ble Newt	on Raph	son meth	od find	the valu	e of x_1	and x ₂	8
			2							
		,	$=(2x_1^2+x_1^2)$	- ,						
		$f_2(x) =$	$({x_1}^2 - {x_2}^2)$	$+ x_1 x_2 - 4$	$\mathbf{r} = 0$					
2	A									10
		Polovy is given th	o ET ID (E	Courier Tree	nsform Infr	o Dad) date	o of a 1·1 (hy waight)	mivture of	
		Below is given the FT-IR (Fourier Transform Infra Red) data of a 1:1 (by weight) mixture of								
		ethylene carbonate (EC) and dimethyl carbonate (DMC). Absorbance P is given as a								
		function of wavenumber, m. Regress the above data to a second order polynomial $P = a +$								
		$b*m+c*m^2$								
		XX7 1	004 104	007.207	046 611	0.60 7.50	000 020	002.005	000 600	
		Wavenumber <i>m</i> (cm-1)	804.184	827.326	846.611	869.753	889.038	892.895	900.609	
		Absorbance <i>P</i>	0.1591	0.0439	0.005	0.0073	0.0448	0.0649	0.1204	
<u> </u>		1 135010 unice 1	0.1071	0.0107	0.005	0.0075	0.0110	0.0017	0.1201	<u> </u>

2	В	For the given reaction, $H_2O \longrightarrow H_2 + 0.5 O_2$						
		The mole fracti	on 'x' of H ₂	O that dissociate	es can be repres	sented by		
		$K = \frac{x}{1 - x} \sqrt{\frac{2P_t}{2 + x}}$						
		Where K is the	reaction equi	librium constan	t and Pt is the t	total pressure of	the mixture.	
		If $P_t = 3$ atm and $K = 0.05$ determine the value of 'x'.						
3	A	In an attempt to understand the mechanism of the depolarization process in a fuel cell, an electro-kinetic model for mixed oxygen-methanol current on platinum was developed in the laboratory at FAMU. A very simplified model of the reaction developed suggests a functional relation in an integral form. To find the time required for 50% of the oxygen to be consumed, the time, T(s) is given by $T = -\int_{1.22 \times 10^{-6}}^{0.61 \times 10^{-6}} \left(\frac{6.73x + 4.3025 \times 10^{-7}}{2.316 \times 10^{-11} r} \right) dx$						
3	В	Find the time required for 50% of the oxygen to be consumed. Use single segment Trapezoidal rule and Simpson's 1/3 rd rule. Compare the results. Find the true error, Et. The specific volume of a superheated steam is listed in steam tables for various temperatures. For example, at a pressure of 3000 lb/in ² , absolute. Determine 'v' at T=750°F.						
		T (°F) 700 720 740 760 780						
		V ft ³ lbm ⁻¹	0.0977	0.12184	0.1406	0.15509	0.16643	
4	A	Write a note on the importance of numerical methods in chemical engineering. 5						
4	В	Discuss the different types of errors emcountered in numerical methods						5
4	С	For the reactions, A B, A D, B C, B D and C D, in a batch reactor under constant pressure and temperature determine the equilibrium concentration of each component						
		$-0.2 C_{A} + 0.55 C_{B} - 0.1 C_{C} + 0.052 C_{D} = 0$ $0.45 C_{C} + 0.81 C_{C} = 0.11 C_{C} = 0$						
		$0.45 C_{\rm B} + 0.81 C_{\rm C} - 0.11 C_{\rm D} = 0$						

	$0.3 C_A + 0.8 C_B + 0.04 C_C - 0.1 C_D = 0$					
	Constraint:- The concentration of all species must sum to one					
5	A rod of steel is subjected to a temperature of 100° C on the left end and 25° C on the right 2					
	end. If the rod is of length 0.05 m, use Crank-Nicolson method to find the temperature					
	distribution in the rod from $t = 0$ to $t = 6$ seconds. Use $\Delta x = 0.01$ m, $\Delta t = 3$ s.					
	Given					
	$k = 54 \ W \ m^{1} \ K^{1} \qquad \rho = 7800 \ kg \ m^{3} \qquad Cp = 490 \ J \ kg^{1} \ K^{1} \ .$					
	The initial temperature of the rod is 20° C.					
6	A vertical, cylindrical tank is filled with hot water at 80°C. The tank is insulated at the	20				
	bottom alone and is exposed on its vertical sides and top to air at 25°C . The diameter of					
	the tank is 50 cm and its height is 100 cm. The overall heat transfer coefficient, U, is 120					
	W/(m. K). Neglect the metal wall of the tank and assume water in the tank is perfectly					
	mixed (i. e., uniform temperature). Calculate the elapsing time until the temperature drops					
	to T = 30° C. Use R-K 4^{th} order method with h = 10° C					