Reg. No.			
----------	--	--	--

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

V SEMESTER B.TECH (CHEMICAL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: PROCESS DESIGN OF CHEMICAL EQUIPMENTS [CHE 301]

REVISED CREDIT SYSTEM

Time: 3 Hours MAX. MARKS: 100

Instructions to Candidates:

- ❖ Answer **ANY ONE FULL** question.
- Missing data may be suitable assumed.

1A.	Explain in detail as to how the Economic pipe diameter is calculated using Genereaux method?						
1B.	Estimate the size of hydrocyclone needed to separate 86% of particles with a diameter greater than 0.08 mm, from a dilute slurry with a flow rate of 1250 m³/day. The density of liquid is 1080 kg/m³ and that of the solid is 3000 kg/m³, viscosity 1.5 mNs/m²						
1C.	Synthesis gas has to be cooled from 250 °C to 25 °C. Cold water is available at 20 °C and the output is preferred at 40 °C. Design a suitable STHE for the process.						
2A.	Carbon dioxide is to be absorbed fr MEA solution entering with 0.06 mc O_2 , 79% N_2 and the rest CO_2 . It leads absorber. Data of X and Y are in solution $X = 0.05$ $O_2 = 0.06$ $O_3 = 0.06$ $O_4 = 0.06$ $O_5 = 0.06$ O	les of CO ₂ on so ves with 2% CC te free basis. 0.064	Oute free basion a Oute f	0.068 0.2047 0 = 1000 kg/	ng gas has 6% ent Sieve plate 0.072 0.3411	100	

CHE 301 Page 1 of 1