				Re	eg. No.						
प्रज्ञान Man	i রন্থা Ipal	Manipa	l Ins A Const	titute ituent Ir	e of T nstitute c	ech of Man	nol ipal Ur)gy, M iiversity)	anip		WLEDGE IS POWER
INSPIRED) BY LIFI	E V S N SUBJECT	SEMEST MAKEU F: SIMU	TER B.TH P EXAM LTANE(ECH (CHI INATIOI DUS HEA	EMICA NS, DE AT & N	AL ENC EC 2015 IASS T	JINEERIN / JAN 201 RANSFER	G) 6 (CHE 3	03)	TTEO
REVISED CREDIT SYSTEM Time: 3 Hours MAX. MARKS: 100											
Instructions to Candidates											
		 Answ Missin Use o At. M 	er ANY ng data r f steam t ass: Fe:5	FIVE FU nay be su able is pe	ULL the clitably ass ermitted. 32.065, O	uestion sumed.	ns.				
	1A. 1B.	 1A. What is the population density function? Derive an equation which relates it to the size of the crystals and growth rate. And mention the necessary assumptions. 1B. Explain the process of mechanical vapour recompression with neat sketch and its significance. 									10 10
	2.4	Significance.									
2A. Explain the Weir's super-saturation theory with its if								a hyporbolic chapo?			
	2C	A double effect evaporator in backward feed arrangement is employed to concentrate 10,000kg/hr caustic soda solution from 9% to 47% NaOH with a product rate of 1915 kg/hr, the feed enters the evaporator at 36° C process steam is available at 6.77atm guage and in second effect a vacuum of 0.855 atm is maintained assuming equal heat transfer area, estimate steam consumption & evaporation rate in each effect , the overall heat transfer co-efficient at first and second effect is 2000 and 1500 Kcal/hr.m ² .°C									tte 15 ge fer 20 20 20 20 20 20 20 20 20 20 20 20 20
	 respectively, specific heat value is 0.9Kcal/kg. 3A. Derive the equation of total drying time for cross circulation drying temperature and humidity of the drying gas remain constant. 								ion dryi	ng; at tl	ne 12
	3B.	A wet slab of 0.75m X 0.5m used for dryin moisture by th Wet slab weight,(kg) Dry rate, (kg/m ² hr)	materia n X 2cm. g, calcul ne follow 5.5 5.5	l weighin the equil ate critic ring dryin 4.537 5.5	g 5.5kg c librium m al moistu g data 4.4 5.4	original oisture re cont 4.125 5.2	lly cont e is 4% o ent & ti 3.85 4.8	ains 50% r on wet basi me to dry 3.575 3.4	noisture, s, both th the wet s 3.3 1.2	the slab ne sides a lab to 14 3.02 0.5	is re % 08
	4 A.	 (Kg/m.nr) A Swenson-Walker crystallizer is to produce 1000kg/hr of ferrous sulphate crystal by cooling a saturated solution. The solution enters the crystallizer at 55°C and the slurry leaves at 27°C. The cooling water flows counter currently through the jack and its temperature rises from 16 to 21°C. The overall heat transfer coefficient heat transfer coefficient heat to be 190 w/m².k Estimate the cooling water requirement kg/hr ii) If each crystallizer unit is 3.2m long and each meter of crystallizer provid 2.5m² surface, how many crystallizer units will be required? Given data:- saturated solution of ferrous sulphate contain 170 & 75 parts FeSO₄ p 100 parts excess water at 55°C and 27°C respectively. Specific heat of solution = 2930 J/kg.k Heat of crystallization of FeSO₄ = 66.2 KJ /kg 								lls he et as 10 es er	
	CHE	E 303 Page 1 of 2									

4B.	Explain working principle of Draft tube- baffle crystallizer with neat sketch.	10
5A.	A non-hygroscopic filter cake is to be dried in a continuous countercurrent dryer from 30% moisture to 2% moisture (wet basis) at a rate of 1000 kg per hour. The material enters the dryer at 27°C and leaves at 52°C. Fresh air is mixed with a part of the moist air leaving the dryer and heated to a temperature of 120°C in a finned air heater using low pressure steam (4 kg/cm ² gauge). Calculate (a) the rate of flow of fresh air, (b) the fraction of the air leaving the dryer that recycled, (c) the theoretical steam requirement and (d) the heat loss from the dryer, if any. The following data and information are given : temperature of fresh air = 29°C; humidity=0.018 kg/(kg dry air); humidity of the air leaving the heater = 0.03 kg/(kg dry air); humidity and temperature of the air leaving the dryer = 0.05 kg/(kg dry air), 70°C; specific heat of the dry solid = 920 J/kg.K	10
5B.	Explain the importance of vapor recompression and write short notes on thermal recompression with neat sketch.	10
6A.	Explain the classification of cooling towers with a neat sketch & working principle of mechanical draft cooling tower.	10
6 B .	Solution contains 5% solid is to be concentrated to a level of 40% solid, feed is entering at $25^{\theta}C$ with a flow rate of 28000 Kg/hr, the evaporator is working at reduced pressure such that solution boiling point is $61^{\theta}C$, $U=2900$ Kj/hr.m ² .K and $C_{pf} = 4.12$ Kj/kg.K Negligible heat of dilution a) Estimate economy and b) if the feed temperature is increased to $45^{\theta}C$, then what is steam consumption? (steam available at $126^{\circ}C$) c)if the evaporator is maintained at atmospheric pressure than change in steam consumption ?.	10