

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

V SEMESTER B.TECH (CIVIL ENGINEERING)

END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: ADVANCED STRUCTURAL ANALYSIS [CIE 321]

REVISED CREDIT SYSTEM

Time: 3 Hours

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL the questions.
- ✤ Missing data may be suitable assumed.

1.	Draw the I.L for the forces in members CJ,CI,CD and BH of the Deck type bridge truss shown in Fig. Q1.	10
2.	Find the support reactions for the continuous beam loaded as shown in Fig q2, if the support B sinks by 10mm. use Kani's method. Take E=200 GPa, I= 80×10^6 mm ⁴	10
3.	Using force method of analysis obtain the moments at the ends of the members for the frame shown In Fig Q3. Assume constant EI	10
4.	Using displacement method (stiffness method), analyse for end moments of the frame shown in Fig Q4. Assume constant EI and neglect axial strain	10
5A.	Find the collapse load for the fixed beam shown in Fig.Q5(A).	5
5B.	Design the continuous beam shown in Fig. Q5(B) using plastic analysis. Assume load factor = 1.5, shape factor = 1.14, $\sigma_y = 250$ MPa. Provide uniform cross – section throughout.	5
6A.	Generate flexibility matrix for the same shown in Fig Q6(A). assume constant EI	5
6B.	Determine the displacement of the joint A of pin jointed plane frame shown in Fig. Q6(B). All members having the same cross sectional area.	5

