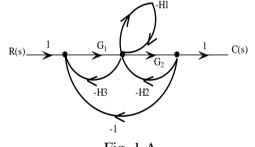
	Reg. No.								
Manipal Institut (A Constituent INSPIRED BY LIFE				an	ip	al	KNOWI	EDGE IS POWER	2 43

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

MAKE UP EXAMINATIONS, DEC 2015 / JAN 2016

SUBJECT: LINEAR CONTROL THEORY [ELE 301]

REVISED CREDIT SYSTEM


Time: 3 Hours

29 December 2015

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitably assumed.
- Semilog graph sheets may be used
- **1A.** A signal flow graph for the system is shown in Fig. 1.A; determine the overall gain using the Mason's Gain formula.

1B. For the rotational mechanial system with gear shown in Fig.1.B., the transfer function $G(s) = \frac{\theta_1(s)}{T(s)}$.

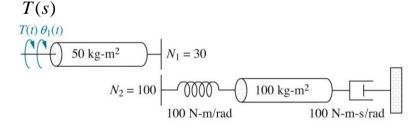
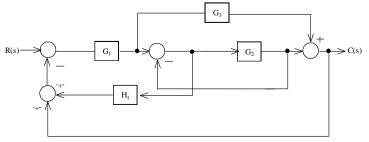



Fig.1.B

(05)

(05)

2A. For the block diagram shown in Fig.2.A find the overall transfer function $\frac{C(s)}{R(s)}$ using block diagram reduction technique.

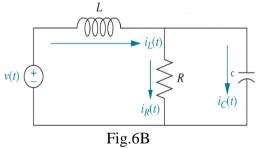
- **2B.** The open loop transfer function $G(s) = \frac{K}{s(s^2 + 4as + 5)}$, find the region of stability on a K plane, 'a' and 'K' are adjustable positive parameters. (05)
- 3A. The phase margin of a second order system is 60° and the natural frequency is 11.31 rad/sec.
 Determine the gain cross over frequency. (04)
- **3B.** A negative unity feedback system has open loop transfer function $G(s)H(s) = \frac{K}{s(2s-1)}$,

investigate the stability of the system by applying Nyquist stability criterion. Sketch the root locus for a unity feedback system with open loop transfer K(s+3) Find the SWS is the set of the system of the sy

- function $G(s)H(s) = \frac{K(s+3)}{s(s+2)}$. Find values of K for breakaway & break in point. Function $G(s)H(s) = \frac{K(s+3)}{s(s+2)}$. Find values of K for breakaway & break in point.
- **4B.** For the unity feedback system with $G(s) = \frac{K(s+0.5)}{s^2(s+4)(s+2)}$, if the input is $0.05t^2u(t)$ and the desired steady state error is 0.08 for this input. For a stable system find the value of K to

meet the specification.

4A.


- 5A. Sketch the Bode plot for a unity feedback system with open loop transfer function $G(s)H(s) = \frac{K}{(s+1)(s+3)(s+10)}, \text{ i) find the value of K for the gain margin to be 12dB}$ ii) find the value of K for the phase margin to be 60°.
- **5B.** A unity negative feedback control system has the plant $G(s) = \frac{K}{s(s + \sqrt{2}K)}$ i) determine the

percentage overshoot and settling time (2 % settling criterion) due to a unit step input ii) For what range of K is the settling time less than 1 second?.

6A. For the unity feedback system with $G(s) = \frac{K}{s(s+6)(s+4)}$, design a PD controller to yield 16% overshoot with three fold reduction in settling time. 'K' of the uncompensated system is

43.35. (07)

6B. Find the state space representation of the electrical network shown in Fig.6.B in physical variable form. The output is $V_c(t)$.

(03)

(07)

(03)

(06)

(07)

(03)