	Reg. No.									
Manipal Manipal Institut INSPIRED BY LIFE (A Constituen)	t te of Tec t Institute of M		-		an	ip	al	KNO C NAMERIA IN	WLEDGE IS	POWER

V SEMESTER B.TECH (ELECTRICAL & ELECTRONICS ENGINEERING)

END SEMESTER EXAMINATIONS, NOVEMBER 2015

SUBJECT: LINEAR CONTROL THEORY [ELE 301]

REVISED CREDIT SYSTEM

Time: 3 Hours

25 NOVEMBER 2015

MAX. MARKS: 50

Instructions to Candidates:

- ✤ Answer ANY FIVE FULL questions.
- ✤ Missing data may be suitably assumed.
- Semilog graph sheets may be used
- **1A.** A signal flow graph for the system is shown in the Fig. 1.A; determine the overall gain using the Mason's Gain formula.

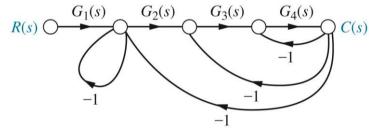
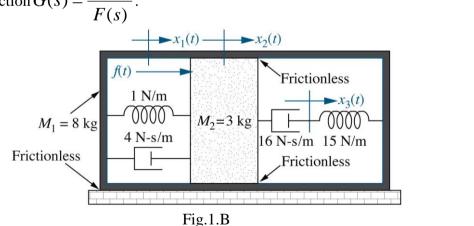
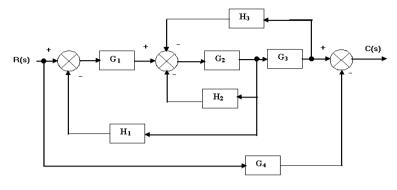



Fig. 1.A

(05)

(05)

1B. For the system shown in Fig.1.B., draw the mechanical equivalent network and find the transfer function $G(s) = \frac{X_2(s)}{F(s)}$.



2A. For the closed loop transfer function $T(s) = \frac{K_1 s + K_2}{s^4 + K_1 s^3 + s^2 + K_2 s + 1}$, find the constraints on $K_1 \& K_2$ such that the function will have only 2 j ω poles. (05)

2B. For the block diagram shown in Fig.2.B find the overall transfer function $\frac{C(s)}{R(s)}$ using block diagram reduction technique. (05)

ELE 301

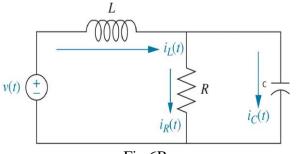
Page 1 of 2

3A. A unity feedback system has an open loop transfer function $G(s) = \frac{K}{s(s+a)^2}$, determine the values of 'K' and 'a' for which the gain margin is 9.54 dB and the phase cross over frequency is 3 rad/sec.

- **3B.** A negative unity feedback system has open loop transfer function $G(s)H(s) = \frac{(1-s)}{s(1+2s)^2}$, investigate the stability of the system by applying Nyquist stability criterion. (06)
- **4A.** Sketch the root locus for a unity feedback system with open loop transfer function $G(s)H(s) = \frac{K(s^2 + 4)}{s(s + 4)}$. Is the system stable for all values of K? (07)

4B. Find the value of 'K' for the unity feedback system with $G(s) = \frac{K(s+2)}{s^2(s+4)}$, if the

input is $10t^2u(t)$ and the desired steady state error is 0.01 for this input.


5A. Sketch the Bode plot for a unity feedback system with open loop transfer function $G(s)H(s) = \frac{K(1+5s)}{s^2(1+0.5s)}$, i) find the phase margin when K=1 ii) determine

the value of K for a phase margin of 45° .

- **5B.** The response to a unit step input of a second order system has a peak overshoot of 16.3% and a settling time of 0.8 second. Find the location of the system poles and transfer function, if the dc gain is unity.
- 6A. For the unity feedback system with $G(s) = \frac{K}{(s+1)(s+4)}$, design a PID controller to

yield a peak time of 1.047 sec and a damping ratio of 0.6, with zero error for a step input. Also design an initial stable controller using Zeigler – Nichols tuning method.

6B. Find the state space representation of the electrical network shown in Fig.6.B in physical variable form. The output is $i_{R}(t)$.

(03)

(04)

(03)

(07)

(03)

(07)