Reg. No.											
----------	--	--	--	--	--	--	--	--	--	--	--

MANIPAL INSTITUTE OF TECHNOLOGY Manipal University

FIFTH SEMESTER B.TECH (E & C) DEGREE END SEMESTER EXAMINATION NOV/DEC 2015 SUBJECT: VLSI DESIGN [ECE 305]

TIME: 3 HOURS	MAX. MARKS: 50
Instructions to candidates	
• Answer ANY FIVE full questions.	

- Missing data may be suitably assumed.
- 1A. Derive the expression for drain current I_{DS} for MOSFET in saturation region.
- 1B. In a CMOS inverter given that $V_{thn} = 0.83 \text{ V}$, $V_{thp} = -0.9 \text{ V}$, $V_{dd} = 5 \text{ V}$. Find the value of logic threshold V_{inv} for following cases : [i] $\beta_n = 0.4\beta_p$ [ii] $\beta_n = 2.5\beta_p$
- 1C. What is the pull-up to pull-down ratio for the depletion load NMOS inverter INV2 driven by another similar depletion load NMOS inverter INV1 for the cases shown in FIG Q1(C)? Give your comments

(5+3+2)

2A. [i] Give a transistor-level schematic circuit for a CMOS logic gate for following functions: (a) $Y = \overline{A \cdot (B + C) + D}$ (b) $Y = \overline{AB + CD}$ (c) $Y = \overline{(A \odot B)}$ (d) $Y = \overline{(A + B) \cdot (C + D)}$

[ii] With a schematic circuit explain the working of Tri-state inverter.

- 2B. Explain why NMOS and PMOS pass transistor is not preferred over transmission gate. Give implementation of 3-input XOR gate with minimum number of transmission gates. Input signals A, B, C and its compliments are available.
- 2C. Give the implementation of Z = A + B.(C + D) using pseudo-NMOS logic design style

(5+3+2)

- 3A. With the help of neat diagrams explain the fabrication of CMOS inverter using SOI process. State any two advantages of SOI process over traditional CMOS.
- 3B. Draw the layout for following:
 - [i] Metal2-to-diffusion connection using via and cut
 - [ii] Contact from metal2-to-metal1 and then to other layer
 - [iii] Buried contact with connecting layers
- 3C. Draw the stick notation and layout for NMOS pass transistor based implementation of 2:1 MUX with enable control input. (5+3+2)
- 4A. Find the optimal number of NMOS inverters to be cascaded so as to drive load capacitance of 1.48 pF off-chip capacitive load such that the total delay is minimized. Given that 1square $C_g = 0.01$ pF. Give the cascaded structure showing L: W ratios. Find the overall delay T_d showing the delay across each inverter stage.

- 4B. Define static power dissipation P_s . Compare static power dissipation in a depletion-mode NMOS inverter and Pseudo-NMOS inverter with justification.
- 4C. State the different components of power dissipation in a CMOS circuit.

(5+3+2)

- 5A. Give the circuit implementation of following multiple output SOP function using a Depletion-NMOS based PLA. Give the stick notation.
 Z₁ = ABC + BC; Z₂ = ABC; Z₃ = ABC + BC
- 5B. With a truth table, give the NMOS gate based implementation of SR latch using only NOR gates.
- 5C. Identify the MOS based circuit structure given in FIG. 5(C) and explain the function implemented by the circuit.

(5+3+2)

- 6A. Explain the concept of leaf cell and structured design approach as applied to implementation of Nbit bus arbitration logic.
- 6B. Bring out differences between constant E field and constant voltage scaling. Discuss scaling effect of these models on following parameters: [i] Gate oxide capacitance C_g [ii] Drain-to-source saturation current I_{des}.
- 6C. Refer the pass-transistor based logic network given in FIG 6C.
 - [a] Determine the truth table for the circuit. What logic function does it implement?
 - [b] Does the PMOS transistor serve any useful purpose?

$$(5+3+2)$$

