प्रज्ञानं ब्रह्म

MANIPAL INSTITUTE OF TECHNOLOGY, MANIPAL 576104

Reg. No.

(Constituent College of Manipal University)

FIFTH SEMESTER B.Tech. (IT) DEGREE MAKE UP EXAMINATION, JANUARY 2016 SUBJECT: SYSTEMS PROGRAMMING - ICT 307 (REVISED CREDIT SYSTEM)

TIME: 3 HOURS	04/01/2016	MAX. MARKS: 50
	Instructions to candidates	
• Answer any FIVE FUL	L questions.	
• Missing data, if any, ma	y be suitably assumed.	

1A. Consider the table shown in Table Q.1A and do the following.

- i. Construct dependency graph for the input : 110110
- ii. Draw the annotated parse tree for the input: 11111

Productions	Semantic Rule
$N \rightarrow S L$	$L.pos \coloneqq 0$
	$N.val \coloneqq S.neg * L.val$
S→+	$S.neg \coloneqq 1$
S→-	S.neg \coloneqq -1
$L \rightarrow L1 B$	$L1.pos \coloneqq L.pos + 1$
	$B.pos \coloneqq L.pos$
	$L.val \coloneqq L1.val + B.val$
$L \rightarrow B$	$B.pos \coloneqq L.pos$
	$L.val \coloneqq B.val$
$B \rightarrow 0$	$B.val \coloneqq 0$
B→1	$B.val \coloneqq 2^{B.pos}$

Table O.1A

- 1B. Differentiate between synthesized and inherited attributes.
- 1C. hat is the necessity of augmenting the grammar in LR parsers?
- 2A. Construct LALR parsing table for the following grammar also parse the given string.

$S \rightarrow L=R \mid R$		
$L \rightarrow *R \mid id$		
$R \rightarrow L$		
String : id=*id		

What is input buffering? Explain. 2B.

- 2C. Define and give an example for L-Attributed definitions.
- 3A. Consider the following grammar and do the following.
 - Construct the operator precedence table i.
 - ii. Construct the precedence functions table
 - iii. Show the movement of the parser for the input (a,a,a) $S \rightarrow (L) \mid a$ $L \rightarrow L, S \mid S$
- 3B. Verify the following grammar is ambiguous or not by constructing the parse tree / s. $E \rightarrow E + T \mid T$
 - $T \boldsymbol{\rightarrow} T \ast F \mid F$
 - $F \rightarrow (E) \mid P$
 - P→ ~ E | num Input: (~ num + num * num)

(5+3+2)

(5+3+2)

- 3C. Consider the following expressions represent in terms of implementations of three address code. a = b + c * d;c = b + e / r;
- 4A. Construct the SLR parsing table and parse the string for the following grammar. (5+3+2)
 - $S \rightarrow AxB \mid B$ $A \rightarrow yB \mid z$ $B \rightarrow A$ String: yzyz

4B. Eliminate the left recursion from the following grammar. $A \rightarrow B \mid a \mid CBD$ $B \rightarrow C \mid b$ $C \rightarrow A \mid c$ $D \rightarrow d$

4C. Define sentence and sentential form of grammars. Give an example for each.

(5+3+2)

- 5A. With a neat diagram explain the working of non-recursive predictive parser.
- 5B. Obtain a DFA to accept strings of a's and b's having odd number a's and odd number of b's on $\sum = \{a,b\}$.
- 5C. What is the necessity of augmenting the grammar in LR parsers? (5+3+2)

6A. Consider the following code. Write the three address code and optimize the code using optimization techniques. Assume A is allocated static storage and there are 4 bytes per word. X:=20
WHILE x<10 DO x:=x-1; A[x]:=10; IF x=4 THEN x:=x-2; ENDIF ENDDO Y:=x+5;

- 6B. With a neat diagram explain the phases of a compiler.
- 6C. What is a literal table? Explain

(5+3+2)