

Manipal Institute of Technology, Manipal

(A Constituent Institute of Manipal University)

INSPIRED BY LIFE

FIFTH SEMESTER B.TECH (INSTRUMENTATION AND CONTROL ENGINEERING) END SEMESTER EXAMINATIONS, NOV/DEC 2015

SUBJECT: MODERNN CONTROL THEORY [ICE 301]

Times 2 Hours

MAY MARKS. 50

	Time: 3 Hours MAX. MARKS:	50
	Instructions to Candidates:]
	Answer ANY FIVE FULL questions.	
	 Missing data may be suitably assumed. 	
1A.	Define (i) State vector (ii) State space	02
1 B .	Consider the system with transfer function	03
12.	$G(s) = \frac{s+2}{s^2+3s+2}$. Obtain the observable and controllable canonical realization of the	05
1C.	system. Obtain the diagonal canonical realization of the system	05
	$G(s) = \frac{6}{s^3 + 6s^2 + 11s + 6}$	
2A.	Write down the properties of state transition matrix	02
2B.	The state space representation of a separately excited DC servomotor with dynamics is	03
	given $\begin{bmatrix} \dot{\omega} \\ i_a \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ -1 & -10 \end{bmatrix} \begin{bmatrix} \omega \\ i_a \end{bmatrix} + \begin{bmatrix} 0 \\ 10 \end{bmatrix} u$, where ω is the angular displacement and i_a is the	
	armature current and u is the armature voltage. What is the transfer function $\frac{\omega(s)}{u(s)}$ of	
2C.	the motor. Take angular displacement of the motor as output. A Continuous time system is described by the state model.	05
	$\dot{x}(t) = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 2 \end{bmatrix} u(t) \; ; \; y(t) = 1 \begin{vmatrix} 0 & \overline{x}(t) \end{vmatrix} $ Is the system controllable,	
	observable? Also design a state feedback controller which will place the closed loop	
	poles at $s = 0.3$ and $s = 0.5$. Verify the result by applying Ackermann's formula.	
3A.	List the characteristics of nonlinear systems	02
3B.	Derive the describing function of viscous and coulomb friction	03
3C.	An autonomous system is described by $\dot{x} = Ax$. The response of the system to two sets	05

of initial conditions are
$$x = \begin{bmatrix} 2e^{-4t} \\ e^{-4t} \end{bmatrix}$$
 for $x(0) = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$; and $x = \begin{bmatrix} 4e^{-2t} \\ e^{-2t} \end{bmatrix}$ for $x(0) = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$. Find

the state transition matrix.

- **4A.** Define (i) Singular point (ii) boundedness
- **4B.** Check the sign definiteness of the following quadratic functions **02**

i)
$$F(x) = 4x_1^2 + 4x_2^2 + 2x_3^2 + 2x_1x_2 + 8x_1x_3 - 8x_2x_3$$

ii)
$$F(x) = x_1^2 + 2x_2^2 + 2x_3^2 + 3x_1x_2 - 8x_2x_3 - 2x_1x_3$$

4C. Consider a third order linear system with dead zone nonlinearity given by **06**

 $G(s) = \frac{1}{s(s+3)(s+5)}$. Check whether the limit cycle exits or not. If exists determine the amplitude and frequency of oscillation. Also comment on the limit cycle. Let slope K=3. Total length of the dead zone is 4.

5A. Define (i) Phase plane (ii) Describing function 02

- **5B.** Explain the procedure of Isocline method for drawing phase trajectories **03**
- **5C.** Find the equilibrium points for the system described by $\ddot{y} + (1 y)\dot{y} + 3y + 0.5y^3$ **05**
- **6A.** State Lyapunov (i) Stability theorem (ii) Instability theorem **02**
- **6B.** Generate a Lyapunov function and describe the stability of the following system **03** $A = \begin{bmatrix} -1 & -2 \\ 1 & -4 \end{bmatrix}$
- 6C. Use direct method of Lyapunov to show that the following linear autonomous system is 05 stable for K > 0, also find the range for K.

$$\dot{x} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & -1 & 1 \\ -2K & -1+K & -K \end{bmatrix} x$$

02