Reg.No.					

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal University, Manipal – 576 104

(05)

(05)

(05)

V SEM. B.Tech. (MECHANICAL ENGINEERING.) DEGREE END SEM EXAMINATIONS NOVEMBER/DECEMBER - 2015

SUBJECT: AUTOMATIC CONTROL ENGINEERING (MME-343) REVISED CREDIT SYSTEM

Time: 3 Hours. (07/12/2015) MAX.MARKS: 50

Instructions to Candidates:

- **❖** Answer **ANY FIVEFULL** questions.
- **1A)** Explain with suitable example the working of a regulatory type control system **(05)**
- **1B)** Simplify the block diagram shown in Fig Q1B, and determine the closed loop transfer function.

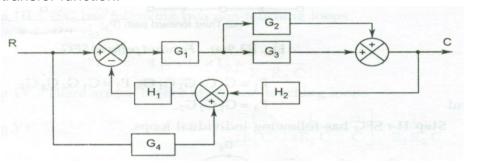


Fig Q1B

- **2A)** The feed forward transfer function of a unity feedback control system is given by $G(s) = \frac{4}{s^2 + s}$. Calculate the following for unit step input applied on the system,

 a) Rise time b) peak time and c) peak overshoot.
 - σ, που πια σ, μουπιπιο σπο σ, μουπιστοιοι
- **2B)** With usual notations, derive the expression for the transfer function of a first order thermal system (furnace). List the assumptions made.
- **3A)** Draw the root locus for a closed loop system with unity feedback for which $G(s) = \frac{K}{s(s+4)(s+8)}$. Determine the marginal value of K to ensure stability. (05)
- **3B)** Obtain the transfer function from the state space matrices shown below, (05) (MME-343)

$$A = \begin{bmatrix} -2 & 1 \\ 0 & -3 \end{bmatrix}$$
 $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \end{bmatrix}$

- **4A)** A unity feedback system has $G(s) = \frac{K}{s(s+1)(s+2)(s+4)}$. Using Routh's criteria , find the marginal value of K for stability. (03)
- **4B)** Find the transfer function of a system with the Bode plot shown in Fig Q4B.

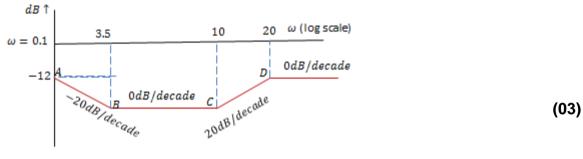


Fig Q4B

- 4C) With the help of block diagram for a proportional controlled speed governor for a gas turbine with load, derive the expression for the steady state error due to reset value (with unit step input) and show the influence of damping coefficient in controlling steady state error.
 (04)
- **5A)** Draw the Nyquist plot for the system with open loop transfer function $G(s)H(s)=\frac{12}{s(s+1)(s+2)}$ and ascertain stability. Also find the gain margin. (05)
- **5B)** Distinguish between regulatory and follow up closed loop control system (02)
- **5C)** A **unity feedback** system has $G(s) = \frac{K}{s(s+5)(1+0.3s)}$. Determine steady state error for an input signal r(t) = 7t (Ramp input) and K = 10. (03)
- 6A) Write a computer algorithm for digital PID controller (03)
- **6B)** For a system with open loop transfer function $G(s)H(s) = \frac{4}{s(s+2)}$, has a undamped natural frequency of 4 rad/s and the damping factor $\xi = 0.5$. In the root locus plot, the dominant closed loop poles are $s_d = -2 \pm 3.46j$. **(05)** Determine the location of pole and zero of the compensator using root locus method. What is the gain of the compensator?
- 6C) Write note on M circles and N circles. (02)

(MME-343) Page 2 of 2