Reg. No.					

MANIPAL INSTITUTE OF TECHNOLOGY

Manipal University, Manipal – 576 104

V SEMESTER B.TECH. (MECH. AND I. & P. ENGG.) DEGREE END SEMESTER (MAKE UP) EXAMINATIONS DEC. 2015 / JAN. 2016

SUBJECT: HEAT TREATMENT AND ENGINEERING ALLOYS PROGRAMME ELECTIVE - 1 [MME 345]

REVISED CREDIT SYSTEM

Time: 3 Hours. MAX.MARKS: 50

Instructions to Candidates:

- ❖ Answer **ANY FIVE FULL** questions.
- Missing data, if any, may be suitably assumed.
- Use graph sheets if required.

1 A.	Sketch neatly the ideal Iron-Carbon phase diagram, showing all the temperature points, composition and phases. From the diagram determine the composition of steel containing 90 weight percentage pearlite phase.	4
1 B.		3
1 C.	Explain the following treatments. i) Isothermal annealing ii) Ferritising annealing	3
2 A.	With heat treatment cycle explain the following thermomechanical treatments. i) Marstraining ii) Isoforming	4
2 B.	Name and explain different plain carbon steels.	3
2 C.	Why IT diagram is important for heat treatment? Explain.	3
3 A.	Differentiate between: i) Thermomechanical and Thermochemical treatments ii) Super critical treatment and HTMT	4
3 B.	Explain the standard heat treatment for white cast iron with heat treatment cycle.	3
3 C.	Write short notes on: i) Valve steel ii) Electrical steel	3
4 A.	Explain the following heat treatment processes i) Ion nitriding ii) Electron beam hardening.	4

(MME-345) Page 1 of 2

4 B.	with suitable graphs explain characteristics of martensite formation.			
4 C.	 Give technical reasons for the following i) It is better to give post carburizing treatment for the solid carburized components. ii) Thermomechanical annealing is the substitute for conventional spheroidising. 	3		
5 A. 5 B.	Explain the principle of surface hardening. Also explain laser beam hardening. With standard graphs explain the effect of alloying elements on the eutectoid temperature and composition.	4 3		
5 C.	Write a note on age hardenable nonferrous alloys.	3		
6.	Write short notes on the following: a) Alloy cast iron b) Partial annealing c) Vacuum carburising d) Carbide formers 	10		

(MME-345) Page 2 of 2